Skip to main content
Log in

The names of physics: plasma, fission, photon

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The study of the origin and dissemination of names used in science is a useful but largely uncultivated historiographical method. What I call the etymological approach to the history of science is here illustrated by an examination of three important terms that originated in the 1920s and 1930s and are today as popular as ever. The names “plasma” and “fission” were introduced in physics in 1928 and 1939, respectively, in both cases by borrowing a name that was already firmly established in the biological sciences. The etymology of “photon” is different and more complex. Although it was quickly understood as just a synonym for Einstein’s light quantum going back to 1905, when it was originally introduced it was with a different meaning. It can be traced back to 1916, when it was proposed as a unit for the illumination of the retina, and ten years later the name was revived in still another non-Einsteinian context. Apart from examining how the three words first entered physics, I also look at how the physics community initially responded to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaserud, F. 1990. Redirecting Science: Niels Bohr, Philanthropy and the Rise of Nuclear Physics. Cambridge University Press, Cambridge.

  2. Alfvén, H. 1950. Cosmical Electrodynamics. Oxford University Press, Oxford.

  3. Arnold, W.A. 1991. Experiments. Photosynth. Res. 27: 73-82.

    Article  Google Scholar 

  4. Bacciagaluppi, G. and A. Valentini. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge.

  5. Badash, L., E. Hodes and A. Tiddens. 1986. Nuclear fission: Reactions to the discovery in 1939. Proc. Am. Phil. Soc. 130: 196-231.

    Google Scholar 

  6. Band, W. 1927. Prof. Lewis’ “light corpuscles”. Nature 120: 405-406.

    Article  ADS  Google Scholar 

  7. Banerji, A.C. 1934. Nuclear structure, gamma-ray fission, and the expanding universe. Nature 133: 984.

    Article  ADS  Google Scholar 

  8. Barten, P.G.J. 1999. Contrast Sensitivity of the Human Eye and its Effects on Image Quality. International Society for Optical Engineering, Bellingham, Washington.

  9. Berberan-Santos, M.N. 2001. Pioneering contributions of Jean and Francis Perrin to molecular luminescence. In New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, edited by B. Valeur, J.-C. Brochon. Springer, Berlin, pp. 7-33.

  10. Birtwistle, G. 1928. The New Quantum Mechanics. Cambridge University Press, Cambridge.

  11. Bohr, N. 1939a. Resonance in uranium and thorium disintegrations and the phenomenon of nuclear fission. Phys. Rev. 55: 418-419.

    Article  MATH  ADS  Google Scholar 

  12. Bohr, N. 1939b. Disintegration of heavy nuclei. Nature 143: 330.

    Article  MATH  ADS  Google Scholar 

  13. Brown, S.C. 1978. A short history of gaseous electronics. In Gaseous Electronics, Electrical Discharges, edited by M.N. Hirsh, H.J. Oskam. Academic Press, London, Vol. 1, pp. 1-18.

  14. Brush, S.G. 1996. A History of Planetary Physics: Fruitful Encounters. Cambridge University Press, Cambridge.

  15. Caso, A.L. 1980. The production of new scientific terms. Amer. Speech 55: 101-111.

    Article  Google Scholar 

  16. Coffey, P. 2008. Cathedrals of Science: The Personalities and Rivalries that Made Modern Chemistry. Oxford University Press, Oxford.

  17. Compton, A.H. 1928a. Discordances entre l’expérience et la théorie électromagnétique du rayonnement. In Électrons et Photons. Rapports et Discussions de Cinquième Conseil de Physique, edited by Institut International de Physique Solvay. Gauthier-Villars, Paris, pp. 55-85.

  18. Compton, A.H. 1928b. X-rays as a branch of optics. J. Opt. Soc. Am. Rev. Sci. Instr. 16: 71-87.

    Article  ADS  Google Scholar 

  19. Compton, A.H. 1929. What things are made of. Sci. Am. 140: 110-113, 234-236.

    Article  ADS  Google Scholar 

  20. Comstock, D.F. and L.T. Troland. 1917. The Nature of Matter and Electricity: An Outline of Modern Views. Van Nostrand Co., New York.

  21. De Broglie, L. 1925. Recherche sur la théorie des quanta. Ann. Physique 3: 22-138.

    MATH  Google Scholar 

  22. Dingle, H. 1924. Modern Astrophysics. W. Collins & Co., London.

  23. Dirac, P.A.M. 1930. The Principles of Quantum Mechanics. Oxford University Press, Oxford.

  24. Franklin, A. 2013. Millikan’s measurements of Planck’s constant. Eur. Phys. J. H 38: 573-594.

    Article  Google Scholar 

  25. Friedel, E. and F. Wolfers. 1924. Les variations de longueur d’onde des rayons X par diffusions et la loi de Bragg. Comptes Rendus 178: 199-200.

    Google Scholar 

  26. Frisch, O.R. 1939. Physical evidence for the division of heavy nuclei under neutron bombardment. Nature 143: 276.

    Article  MATH  ADS  Google Scholar 

  27. Frisch, O.R. 1979. What Little I Remember. Cambridge University Press, Cambridge.

  28. Frisch, O.R. and J.A. Wheeler. 1967. The discovery of fission. Phys. Today 20: 43-52.

    Article  Google Scholar 

  29. Gabor, D., E.A. Ash and D. Dracott. 1955. Langmuir’s paradox. Nature 176: 916-919.

    Article  ADS  Google Scholar 

  30. Graetzer, H.G. and D.L. Anderson. 1971. The Discovery of Nuclear Fission. Van Nostrand Reinhold, New York.

  31. Haas, A.E. 1928. Materiewellen und Quantenmechanik. Akademische Verlagsgesellschaft, Lepzig.

  32. Hahn, O. and F. Strassmann. 1939. Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung: Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung. Naturwissenschaften 27: 89-95.

    Article  MATH  ADS  Google Scholar 

  33. Henri, V. and R. Wurmser. 1913. Action des rayons ultraviolets sur l’eau oxygénée. Comptes Rendus 157: 126-128.

    Google Scholar 

  34. Jeans, J.H. 1925. The radiation from a pulsating star and from a star in process of fission. Mon. Not. R. Astron. Soc. 86: 86-93.

    Article  ADS  Google Scholar 

  35. Joly, J. 1921a. A quantum theory of vision. Phil. Mag. 41: 289-304.

    Article  Google Scholar 

  36. Joly, J. 1921b. A quantum theory of colour vision. Proc. Roy. Soc. B 92: 219-232.

    Article  ADS  Google Scholar 

  37. Koch, C.H. 1836. Das System der Circulation in seiner Entwicklung durch die Thierreiche und im Menschen. Cotta’schen Buchhandlung, Stuttgart.

  38. Koch, C.H. 1839. The circulating system. The Lancet 32: 712-718,

    Article  Google Scholar 

  39. Kojevnikov, A.B. 1999. Freedom, collectivism, and quasiparticles: Social metaphors in quantum physics. Hist. Stud. Phys. Biol. Sci. 29: 295-331.

    Article  Google Scholar 

  40. Kragh, H. 2013. Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics. Eur. Phys. J. H 38: 549-572.

    Article  Google Scholar 

  41. Kragh, H. 2014a. Naming the big bang. Hist. Stud. Nat. Sci. 44: 3-36.

    Google Scholar 

  42. Kragh, H. 2014b. Photon: New light on an old name. Arxiv: 1401.0293 [physics.hist-ph].

  43. Kruta, V. 1975. Purkyně, Jan Evangelista. In Dictionary of Scientific Biography, edited by C.C. Gillispie. Charles Scribner’s Sons, New York, Vol. 11, pp. 215-217.

  44. Lamb, W.E. 1995. Anti-photon. Appl. Phys. B 60: 77-84.

    Article  ADS  Google Scholar 

  45. Langmuir, I. 1928. Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14: 627-637.

    Article  ADS  Google Scholar 

  46. Lavorel, J. 1996. The importance of being lucky: A tribute to William Arnold. Photosynth. Res. 48: 31-34.

    Article  Google Scholar 

  47. Lewis, E. 1998. A Biography of Distinguished Scientist Gilbert Newton Lewis. Edwin Mellen Press, New York.

  48. Lewis, G.N. 1926a. Light waves and light corpuscles. Nature 117: 236-238.

    Article  MATH  ADS  Google Scholar 

  49. Lewis, G.N. 1926b. The conservation of photons. Nature 118: 874-875.

    Article  ADS  Google Scholar 

  50. Mehra, J. and H. Rechenberg. 2000. The Historical Development of Quantum Mechanics. Springer, New York, Vol. 6.

  51. Meitner, L. and O.R. Frisch. 1939. Disintegration of uranium by neutrons: A new type of nuclear reactions. Nature 143: 239-240.

    Article  MATH  ADS  Google Scholar 

  52. Millikan, R.H. 1924. The Electron. Its Isolation and Measurement and the Determination of Some of its Properties. University of Chicago Press, Chicago.

  53. Millikan, R.H. and C.D. Anderson. 1932. Cosmic-ray energies and their bearing on the photon and neutron hypotheses. Phys. Rev. 40: 325-328.

    Article  ADS  Google Scholar 

  54. Mott-Smith, H.M. 1971. History of “plasmas”. Nature 233: 219.

    Article  ADS  Google Scholar 

  55. Nudds, J.R. 1986. The life and work of John Joly (1857–1933). Irish J. Earth Sci. 8: 81-94.

    Google Scholar 

  56. Olby, R. 1972. Fleming, Walther. In Dictionary of Scientific Biography, edited by C.C. Gillispie. Charles Scribner’s Sons, New York, Vol. 5, pp. 34-36.

  57. Pais, A. 1982. “Subtle is the Lord...”: The Science and the Life of Albert Einstein. Oxford University Press, Oxford.

  58. Peierls, R., ed. 1986. Niels Bohr. Collected Works, Vol. 9: Nuclear Physics (1929-1952). North-Holland, Amsterdam.

  59. Peratt, A.L. 1985. Birkeland and the electromagnetic cosmology. Sky & Telescope 69: 389-391.

    ADS  Google Scholar 

  60. Pines, D. 1956. Collective energy losses in solids. Rev. Mod. Phys. 28: 184-198.

    Article  MATH  ADS  Google Scholar 

  61. Post, R.F. 1995. Plasma physics in the twentieth century. In Twentieth Century Physics, edited by L.M. Brown, A. Pais, B. Pippard. American Institute of Physics Press, New York, pp. 1617-1690.

  62. Reich, L.S. 1983. Irving Langmuir and the pursuit of science and technology in the corporate environment. Techn. Cult. 24: 199-221.

    Article  Google Scholar 

  63. Rosenfeld, A. 1966. The Quintessence of Irving Langmuir. Pergamon Press, Oxford.

  64. Stuewer, R.H. 1975a. The Compton Effect: Turning Point in Physics. Science History Publications, New York.

  65. Stuewer, R.H. 1975b. G.N. Lewis on detailed balancing, the symmetry of time, and the nature of light. Hist. Stud. Phys. Sci. 6: 469-511.

    Google Scholar 

  66. Stuewer, R.H. 1985. Bringing the news of fission to America. Physics Today 38: 49-56.

    Article  Google Scholar 

  67. Stuewer, R.H. 1986. The naming of the deuteron. Am. J. Phys. 54: 206-218.

    Article  ADS  Google Scholar 

  68. Suits, C.G., ed. 1960–1962. The Collected Works of Irving Langmuir. Pergamon Press, Oxford.

  69. Tonks, L. 1967. The birth of “plasma”. Am. J. Phys. 35: 857-858.

    Article  ADS  Google Scholar 

  70. Tonks, L. and I. Langmuir. 1929. General theory of the plasma of an arc. Phys. Rev. 34: 876-922.

    Article  ADS  Google Scholar 

  71. Troland, L.T. 1916. Apparent brightness; its conditions and properties. Trans. Illum. Engin. Soc. 11: 947-975.

    Google Scholar 

  72. Troland, L.T. 1917. On the measurement of visual stimulation intensities. J. Exp. Psych. 2: 1-33.

    Article  Google Scholar 

  73. Troland, L.T. 1922. The present status of visual science. Bull. Nat. Res. Council 5: 1-120.

    Google Scholar 

  74. Walker, C.T. and G.A. Slack. 1970. Who named the –ON’s? Am. J. Phys. 38: 1380-1389.

    Article  ADS  Google Scholar 

  75. Weart, S.R. 1983. The discovery of fission and a nuclear physics paradigm. In Otto Hahn and the Rise of Nuclear Physics, edited by W.R. Shea. Reidel, Dordrecht, pp. 91-134.

  76. Weart, S.R. and M. Phillips, eds. 1985. History of Physics: Readings from Physics Today. American Institute of Physics, New York.

  77. Weyl, H. 1931. The Theory of Groups and Quantum Mechanics. Dover Publications, New York.

  78. Wolfers, F. 1924. Interférence par diffusion. Comptes Rendus 179: 262-262.

    Google Scholar 

  79. Wolfers, F. 1925. Sur un nouveau phénomène en optique; interférence par diffusion. J. Phys. 6: 354-368.

    Google Scholar 

  80. Wolfers, F. 1926. Une action probable de la matière sur les quanta de radiation. Comptes Rendus 183: 276-277.

    Google Scholar 

  81. Wolfers, F. 1929. Transmutation des Éléments. Éditions Scientifiques, Paris.

  82. Wurmser, R. 1925a. La rendement énergétique de la photosynthèse chlorophylliene. Ann. Physiol. Physicochimie Biol. 1: 47-63.

    Google Scholar 

  83. Wurmser, R. 1925b. Sur l’activité des diverses radiations dans la photosynthèse. Comptes Rendus 181: 374-375.

    Google Scholar 

  84. Wurmser, R. 1987. Letter to the editor. Photosynth. Res. 13: 91-93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Kragh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kragh, H. The names of physics: plasma, fission, photon. EPJ H 39, 263–281 (2014). https://doi.org/10.1140/epjh/e2014-50007-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2014-50007-7

Keywords

Navigation