Skip to main content
Log in

Ligand-mediated adhesive mechanics of two static, deformed spheres

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A self-consistent model is developed to investigate attachment/detachment kinetics of two static, deformable microspheres with irregular surface and coated with flexible binding ligands. The model highlights how the microscale binding kinetics of these ligands as well as the attractive/repulsive potential of the charged surface affects the macroscale static deformed configuration of the spheres. It is shown that in the limit of smooth, neutrally charged surface (i.e., the dimensionless inverse Debye length, \(\kappa D \rightarrow \infty\)), interacting via elastic binders (i.e., the dimensionless stiffness coefficient, \(\gamma \rightarrow 0\)) the adhesion mechanics approaches the regime of application of the JKR theory, and in this particular limit, the contact radius, Rc, scales with the particle radius, R, according to the scaling law, \(R_{c}\propto R^{2/3}\). We show that static, deformed, highly charged, ligand-coated surface of micro-spheres exhibit strong adhesion. Normal stress distribution within the contact area adjusts with the binder stiffness coefficient, from a maximum at the center to a maximum at the periphery of the region. Although reported in some in vitro experiments involving particle adhesion, until now a physical interpretation for this variation of the stress distribution for deformable, charged, ligand-coated microspheres is missing. Surface roughness results in a diminished adhesion with a distinct reduction in the pull-off force, larger separation gap, weaker normal stress and limited area of adhesion. These results are in agreement with the published experimental findings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Von Byern, I. Grunwald (Editors), Biological Adhesive Systems (Springer-Verlag, Wien, 2010)

  2. C. Zhu, J. Biomech. 33, 23 (2000)

    Article  Google Scholar 

  3. M.A. Moss, K.W. Anderson, J. Adhes. 74, 19 (2000)

    Article  Google Scholar 

  4. S. Sircar, D.M. Bortz, Math. Biosci. 245, 314 (2013)

    Article  MathSciNet  Google Scholar 

  5. J.X.J. Zhang, K. Hoshino, Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering (Elsevier, Waltham, MA, 2013)

  6. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, C. Zhu, Nature 423, 190 (2003)

    Article  ADS  Google Scholar 

  7. M. Varenberg, S. Gorb, J. R. Soc. Interface R. Soc. 4, 721 (2007)

    Article  Google Scholar 

  8. H. Hertz, J. Reine Angew. Math. 92, 156 (1882)

    MathSciNet  Google Scholar 

  9. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. London A 324, 301 (1971)

    Article  ADS  Google Scholar 

  10. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, J. Colloid Interface Sci. 53, 131 (1975)

    Article  Google Scholar 

  11. D. Tabor, J. Colloid Interface Sci. 58, 2 (1977)

    Article  Google Scholar 

  12. M. Dembo, D.C. Torney, K. Saxman, D. Hammer, Proc. R. Soc. London, Ser. B 234, 55 (1988)

    Article  ADS  Google Scholar 

  13. S.R. Hodges, O.E. Jensen, J. Fluid Mech. 460, 381 (2002)

    Article  ADS  Google Scholar 

  14. M.G. Forest, S. Sircar, Q. Wang, R. Zhou, Phys. Fluids 18, 103102 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Korn, U.S. Schwarz, Phys. Rev. Lett. 97, 1 (2006)

    Article  Google Scholar 

  16. M. Mani, A. Gopinath, L. Mahadevan, Phys. Rev. Lett. 108, 226104 (2012)

    Article  ADS  Google Scholar 

  17. T. Bihr, U. Seifert, A.S. Smith, Phys. Rev. Lett. 109, 1 (2012)

    Article  Google Scholar 

  18. N.G. Cogan, Math. Med. Biol. 21, 147 (2004)

    Article  Google Scholar 

  19. M.R. King, V. Heinrich, E. Evans, D.A. Hammer, Biophys. J. 88, 1676 (2005)

    Article  Google Scholar 

  20. E.V. Sokurenko, V. Chesnokova, R.J. Doyle, D.L. Hasty, J. Biol. Chem. 272, 17880 (1997)

    Article  Google Scholar 

  21. E.V. Sokurenko, V. Chesnokova, D.E. Dykhuizen, I. Ofek, X.R. Wu, K.A. Krogfelt, C. Struve, M.A. Schembri, D.L. Hasty, Proc. Natl. Acad. Sci. U.S.A. 95, 8922 (1998)

    Article  ADS  Google Scholar 

  22. S. Sircar, J.G. Younger, D.M. Bortz, J. Biol. Dyn. 9, 79 (2014)

    Article  MathSciNet  Google Scholar 

  23. S.M. Tabatabaei, T.G.M. Van De Ven, J. Fluid Mech. 656, 360 (2010)

    Article  ADS  Google Scholar 

  24. J.F.L. Duval, J.P. Pinheiro, H.P. Van Leeuwen, J. Phys. Chem. A 112, 7137 (2008)

    Article  Google Scholar 

  25. G. Bell, Science 200, 618 (1978)

    Article  ADS  Google Scholar 

  26. P. Somasundaran, V. Runkanan, P. Kapur, H. Stechemesser, B. Dobiáš, Coagulation Flocculation 126, 767 (2005)

    Google Scholar 

  27. W. Thomas, Annu. Rev. Biomed. Engin. 10, 39 (2008)

    Article  Google Scholar 

  28. S. Reboux, G. Richardson, O.E. Jensen, Proc. R. Soc. A: Math. Phys. Eng. Sci. 464, 447 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. T.R. Garrett, M. Bhakoo, Z. Zhang, Prog. Nat. Sci. 18, 1049 (2008)

    Article  Google Scholar 

  30. J. Gregory, Particles in Water: Properties and Processes (CRC Press, Boca Raton, 2006)

  31. B. Fang, Y. Jiang, K. Nusslein, V. Rotello, M. Santore, Colloids Surf. B 125, 255 (2015)

    Article  Google Scholar 

  32. R.D. Duffadar, J.M. Davis, J. Colloid Interface Sci. 326, 18 (2008)

    Article  Google Scholar 

  33. W. Cheng, P.F. Dunn, R.M. Brach, J. Adhes. 78, 929 (2002)

    Article  Google Scholar 

  34. K.L. Johnson, Contact Mechanics (Cambridge University Press, 1985)

  35. M.J. Ablowitz, A.S. Fokas, Complex Variables: Introduction and Applications, 2nd edition (Cambridge University Press, 2003)

  36. D.A. Hammer, M. Tirrell, Annu. Rev. Mater. Sci. 26, 651 (1996)

    Article  ADS  Google Scholar 

  37. X. Peng, J. Huang, L. Qin, C. Xiong, J. Fang, Acta Mech. Sinica 25, 565 (2009)

    Article  ADS  Google Scholar 

  38. K. Mader-Arndt, Z. Kutelova, R. Fuchs, J. Meyer, T. Staedler, W. Hintz, J. Tomas, Granular Matter 16, 359 (2014)

    Article  Google Scholar 

  39. Y.S. Chu, S. Dufour, J.P. Thiery, E. Perez, F. Pincet, Phys. Rev. Lett. 94, 028102 (2005)

    Article  ADS  Google Scholar 

  40. E. Evans, A. Leung, J. Cell Biol. 98, 1201 (1984)

    Article  Google Scholar 

  41. Z.W. Zhang, B. Neu, Biophys. J. 97, 1031 (2009)

    Article  ADS  Google Scholar 

  42. A.S. Dooki, H.M. Shodja, L. Malekmotiei, Soft Matter 11, 3693 (2015)

    Article  ADS  Google Scholar 

  43. J. Dvorkin, G. Mavko, A. Nur, Mech. Mater. 12, 207 (1991)

    Article  Google Scholar 

  44. G. Toika, G.M. Spinks, H.R. Brown, J. Adhes. 74, 317 (2000)

    Article  Google Scholar 

  45. K.L. Johnson, Proc. R. Soc. London A 453, 163 (1997)

    Article  ADS  Google Scholar 

  46. M. Reitsma, V.S.J. Craig, S. Biggs, J. Adhes. 74, 125 (2000)

    Article  Google Scholar 

  47. M.P. Murrell, R. Voituriez, J.-F. Joanny, P. Nassoy, C. Sykes, M.L. Gardel, Nat. Phys. 10, 163 (2014)

    Article  Google Scholar 

  48. E. Sackmann, A.S. Smith, Soft Matter 10, 1644 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarthok Sircar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sircar, S., Nguyen, G., Kotousov, A. et al. Ligand-mediated adhesive mechanics of two static, deformed spheres. Eur. Phys. J. E 39, 95 (2016). https://doi.org/10.1140/epje/i2016-16095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16095-4

Keywords

Navigation