Skip to main content
Log in

Thermophoresis of cyclic oligosaccharides in polar solvents

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Cyclodextrins are cyclic oligosaccharides which are interesting as drug delivery systems, because they can be used as containers for pharmaceutical substances. We studied the Ludwig-Soret effect of \( \alpha\)-, \( \beta\)-, \( \gamma\)- and methyl-\( \beta\)-cyclodextrin in water and formamide by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). In water the Soret coefficient, S T, of \( \alpha\)-, \( \beta\)- and \( \gamma\)-cyclodextrin increases with increasing temperature and shows a sign change from negative to positive around T = 35 ° C, while S T of methyl-\( \beta\)-cyclodextrin is positive in the entire investigated temperature. In formamide S T-values of all cyclodextrins coincide and show a slight decrease with temperature. We discuss the obtained results and relate the S T-values to the different hydrogen bonding capabilities of the cyclodextrins and the used solvents. It turns out that the change of S T with temperature correlates with the partition coefficient, logP, which indicates that more hydrophilic substances show a more pronounced temperature sensitivity of S T. Additionally we obtained a surprising result measuring the refractive index contrast factor with temperature, \((\partial n/\partial T)_{c,p}\) of cyclodextrins in formamide, which might be explained by a complex formation between cyclodextrins and formamide.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover, New York, 1984)

  2. F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)

    Article  Google Scholar 

  3. C. Angeli, E. Leonardi, Int. J. Heat Mass Transfer 48, 4633 (2005)

    Article  Google Scholar 

  4. M.E. Schimpf, J.C. Giddings, J. Polym. Sci. Pol. Phys. 27, 1317 (1989)

    Article  ADS  Google Scholar 

  5. C.B. Mast, D. Braun, Phys. Rev. Lett. 104, 188102 (2010)

    Article  ADS  Google Scholar 

  6. D. Niether, D. Afanasenkau, J.K.G. Dhont, S. Wiegand, Proc. Natl. Acad. Sci. U.S.A. 113, 4272 (2016)

    Article  ADS  Google Scholar 

  7. W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)

    Article  ADS  Google Scholar 

  8. E.M. Martin Del Valle, Process Biochem. 39, 1033 (2004)

    Article  Google Scholar 

  9. Sunil S. Jambhekar, Philip Breen, Drug Discov. Today 21, 356 (2015)

    Article  Google Scholar 

  10. K.I. Morozov, W. Köhler, Langmuir 30, 6571 (2014)

    Article  Google Scholar 

  11. S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006)

    Article  Google Scholar 

  12. Z. Wang, H. Kriegs, S. Wiegand, J. Phys. Chem. B 116, 7463 (2012)

    Article  Google Scholar 

  13. Y. Kishikawa, S. Wiegand, R. Kita, Biomacromolecules 11, 740 (2010)

    Article  Google Scholar 

  14. R. Sugaya, B.A. Wolf, R. Kita, Biomacromolecules 7, 435 (2006)

    Article  Google Scholar 

  15. K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand, R. Kita, J. Chem. Phys. 143, 124504 (2015)

    Article  ADS  Google Scholar 

  16. P.R. Rablen, J.W. Lockman, W.L. Jorgensen, J. Phys. Chem. A 102, 3782 (1998)

    Article  Google Scholar 

  17. J.P.M. Lommerse, S.L. Price, R. Taylor, J. Comput. Chem. 18, 757 (1997)

    Article  Google Scholar 

  18. Simone Wiegand, Werner Köhler, Thermal Nonequilib. Phenom. Fluid Mixtures 584, 189 (2002)

    Article  ADS  Google Scholar 

  19. S. Wiegand, H. Ning, H. Kriegs, J. Phys. Chem. B 111, 14169 (2007)

    Article  Google Scholar 

  20. W. Köhler, P. Rossmanith, J. Phys. Chem. 99, 5838 (1995)

    Article  Google Scholar 

  21. H. Ning, S. Datta, T. Sottmann, S. Wiegand, J. Phys. Chem. B 112, 10927 (2008)

    Article  Google Scholar 

  22. B. Arlt, S. Datta, T. Sottmann, S. Wiegand, J. Phys. Chem. B 114, 2118 (2010)

    Article  Google Scholar 

  23. P. Blanco, H. Kriegs, M.P. Lettinga, P. Holmqvist, S. Wiegand, Biomacromolecules 12, 1602 (2011)

    Article  Google Scholar 

  24. G. Wittko, W. Köhler, Philos. Mag. 83, 1973 (2003)

    Article  ADS  Google Scholar 

  25. H. Ning, R. Kita, H. Kriegs, J. Luettmer-Strathmann, S. Wiegand, J. Phys. Chem. B 110, 10746 (2006)

    Article  Google Scholar 

  26. R.D. Camerini-Otero, R.M. Franklin, L.A. Day, Biochemistry 13, 3763 (1974)

    Article  Google Scholar 

  27. V.V. Sechenyh, J. Legros, V. Shevtsova, J. Chem. Thermodyn. 43, 1700 (2011)

    Article  Google Scholar 

  28. A. Becker, W. Köhler, B. Müller, Ber. Bunsen. Phys. Chem. 99, 600 (1995)

    Article  Google Scholar 

  29. K. Harata, Bull. Chem. Soc. Jpn. 52, 2451 (1979)

    Article  Google Scholar 

  30. T. Aree, B. Schulz, G. Reck, J. Inclus. Phenom. Macrocyclic Chem. 47, 39 (2003)

    Article  Google Scholar 

  31. M.D. Elola, B.M. Ladanyi, J. Chem. Phys. 125, 184506 (2006)

    Article  ADS  Google Scholar 

  32. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Delivery Rev. 64, 4 (2012)

    Article  Google Scholar 

  33. S. Hartmann, W. Köhler, K.I. Morozov, Soft Matter 8, 1355 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rio Kita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, K., Niether, D., Wiegand, S. et al. Thermophoresis of cyclic oligosaccharides in polar solvents. Eur. Phys. J. E 39, 86 (2016). https://doi.org/10.1140/epje/i2016-16086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16086-5

Keywords

Navigation