Skip to main content
Log in

Motion planning and motility maps for flagellar microswimmers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study two microswimmers consisting of a spherical rigid head and a passive elastic tail. In the first one the tail is clamped to the head, and the system oscillates under the action of an external torque. In the second one, head and tail are connected by a joint allowing the angle between them to vary periodically, as a result of an oscillating internal torque. Previous studies on these models were restricted to sinusoidal actuations, showing that the swimmers can propel while moving on average along a straight line, in the direction given by the symmetry axis around which beating takes place. We extend these results to motions produced by generic (non-sinusoidal) periodic actuations within the regime of small compliance of the tail. We find that modulation in the velocity of actuation can provide a mechanism to select different directions of motion. With velocity-modulated inputs, the externally actuated swimmer can translate laterally with respect to the symmetry axis of beating, while the internally actuated one is able to move along curved trajectories. The governing equations are analysed with an asymptotic perturbation scheme, providing explicit formulas, whose results are expressed through motility maps. Asymptotic approximations are further validated by numerical simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 7060 (2005)

    Article  Google Scholar 

  2. O.S. Pak, W. Gao, J. Wang, E. Lauga, Soft Matter 7, 8169 (2011)

    Article  ADS  Google Scholar 

  3. H. Gadelha, E.A. Gaffney, D.J. Smith, J.C. Kirkman-Brown, J. R. Soc. Interf. 7, 1689 (2010)

    Article  Google Scholar 

  4. J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  6. K.E. Machin, J. Exp. Biol. 35, 796 (1958)

    Google Scholar 

  7. C.H. Wiggins, D. Riveline, A. Ott, R.E. Goldstein, Biophys. J. 74, 1043 (1998)

    Article  ADS  Google Scholar 

  8. C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett. 80, 3879 (1998)

    Article  ADS  Google Scholar 

  9. E. Lauga, Phys. Rev. E 75, 041916 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.J. Abbott, K.E. Peyer, M.C. Lagomarsino, L. Zhang, L. Dong, I.K. Kaliakatsos, B.J. Nelson, Int. J. Robot. Res. 28, 1434 (2009)

    Article  Google Scholar 

  11. H. Gadelha, Regul. Chaotic Dyn. 18, 75 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Passov, Y. Or, Eur. Phys. J. E 35, 1 (2012)

    Article  Google Scholar 

  13. E. Gutman, Y. Or, Phys. Rev. E 90, 013012 (2014)

    Article  ADS  Google Scholar 

  14. E.E. Keaveny, M.R. Maxey, J. Fluid Mech. 598, 293 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. DeSimone, A. Tatone, Eur. Phys. J. E 35, 85 (2012)

    Article  Google Scholar 

  16. A. Desimone, L. Heltai, F. Alouges, A. Lefebvre-Lepot, Computing optimal strokes for low Reynolds number swimmers, in Natural Locomotion in Fluids and on Surfaces (Springer, New York, 2012) p. 177

  17. Y.W. Kim, R.R. Netz, Phys. Rev. Lett. 96, 158101 (2006)

    Article  ADS  Google Scholar 

  18. F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello, Soft. Robot. 2, 117 (2015)

    Article  Google Scholar 

  19. L.J. Burton, R.L. Hatton, H. Choset, A.E. Hosoi, Phys. Fluids 22, 091703 (2010)

    Article  ADS  Google Scholar 

  20. C. Brennen, W. Howard, Annu. Rev. Fluid Mech. 9, 1 (1977)

    Article  Google Scholar 

  21. R.G. Cox, J. Fluid Mech. 44, 04 (1970)

    Article  Google Scholar 

  22. A.K. Tornberg, M.J. Shelley, J. Comput. Phys. 196, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.M. Coron, Control and nonlinearity (American Mathematical Society, 2007)

  24. S.D. Kelly, R.M. Murray, J. Robot. Syst. 12, 6 (1995)

    Article  Google Scholar 

  25. A. Montino, A. DeSimone, Eur. Phys. J. E 38, 5 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cicconofri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicconofri, G., DeSimone, A. Motion planning and motility maps for flagellar microswimmers. Eur. Phys. J. E 39, 72 (2016). https://doi.org/10.1140/epje/i2016-16072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16072-y

Keywords

Navigation