Skip to main content

Advertisement

Log in

Heat and mass transfer models to understand the drying mechanisms of a porous substrate

The European Physical Journal E Aims and scope Submit manuscript

Abstract.

While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.M. McLoughlin, W.A.M. McMinn, T.R.A. Magee, Food Bioprod. Process 78, 90 (2000)

    Article  Google Scholar 

  2. D. Sun, Y. Zhang, J. Coat. Technol. Res. 9, 151 (2012)

    Article  Google Scholar 

  3. A.S. Mujumdar, Handbook of Industrial Drying, 3rd edition (CRC Press, Florida, 2006)

  4. B. Bates, State-of-the-art developments to save energy in coating drying, PaperCon (2010)

  5. E. Frank, Dtsch. Drucker. 32, 2 (1996)

    Google Scholar 

  6. W.L. McCabe, J.C. Smith, P. Harriott, Drying of solids, in Unit Operations of Chemical Engineering, edited by B.J. Clack, E. Casellano (McGraw-Hill Inc., USA, 1993)

  7. A. Avci, M. Can, A.B. Etemoğlu, Appl. Therm. Eng. 21, 465 (2001)

    Article  Google Scholar 

  8. S.X. Pan, H.T. Davis, L.E. Scriven, Tappi J. 1, 37 (1995)

    Google Scholar 

  9. A. Avci, M. Can, Appl. Therm. Eng. 19, 641 (1999)

    Article  Google Scholar 

  10. B.P.E. Dano, J.A. Liburdy, K. Kanokjaruvijit, Int. J. Heat Mass Trans. 48, 691 (2005)

    Article  Google Scholar 

  11. P. Heikkilä, N. Milosavljevic, Drying Technol. 20, 211 (2002)

    Article  Google Scholar 

  12. P. Heikkilä, N. Milosavljevic, Proceedings of the 13th International Drying Symposium (IDS2002), (Beijing, 2002), pp. 1809-1817

  13. H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces (Academic Press, New York, 1977)

  14. A.G. Yiotis, I.N. Tsimpanogiannis, A.K. Stubos, Y.C. Yortsos, J. Colloid Interface Sci. 297, 738 (2006)

    Article  Google Scholar 

  15. J.B. Laurindo, M. Prat, Chem. Eng. Sci. 51, 5171 (1996)

    Article  Google Scholar 

  16. S.C. Nowicki, H.T. Davies, L.E. Scriven, Drying Technol. 10, 925 (1992)

    Article  Google Scholar 

  17. M. Prat, Int. J. Heat Mass Transfer 59, 1455 (2007)

    Article  Google Scholar 

  18. M. Prat, Int. J. Multiphase Flow 21, 875 (1995)

    Article  MATH  Google Scholar 

  19. M. Prat, Int. J. Multiphase Flow 19, 691 (1993)

    Article  MATH  Google Scholar 

  20. A.G. Yiotis, A.K. Boudouvis, A.K. Stubos, I.N. Tsimpanogiannis, Y.C. Yortsos, AIChE J. 50, 2721 (2004)

    Article  Google Scholar 

  21. H. Wang, S.V. Garimella, J.Y. Murthy, Int. J. Heat Mass Transfer 50, 3933 (2007)

    Article  MATH  Google Scholar 

  22. R. Ranjan, J.Y. Murthy, S.V. Garimella, Int. J. Heat Mass Transfer 54, 169 (2011)

    Article  MATH  Google Scholar 

  23. J.B. Laurindo, M. Prat, Chem. Eng. Sci. 53, 2257 (1998)

    Article  Google Scholar 

  24. A.G. Yiotis, I.N. Tsimpanogiannis, A.K. Stubos, Water Resour. Res. 43, 1 (2007)

    Article  Google Scholar 

  25. C. Buffone, K. Sefiane, Int. J. Multiphase Flow 30, 1071 (2004)

    Article  MATH  Google Scholar 

  26. P. Gerstner, C.J. Ridgway, J. Paltakari, P.A.C. Gane, Proceedings of the 14th Fundamental Research Symposium (Oxford, UK, 2009)

  27. J.R. Welty, C.E. Wicks, R.E. Wilson, G. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer (John Wiley & Sons, USA, 2001)

  28. N. Milosavljevic, P. Heikkilä, Proceedings of the 14th International Drying Symposium (IDS 2004), São Polo, Brazil (2004)

  29. P. Heikkilä, N. Milosavljevic, Drying Technol. 21, 1957 (2003)

    Article  Google Scholar 

  30. R. Pesonen, Optimization of a Heatset dryer, Master Thesis (Lappeenranta University of Technology, Finland, 2009)

  31. J.P. Holman, Heat Transfer, 10th edition (McGraw Hill, Singapore, 2010)

  32. R. Bolz, G. Tuve, Handbook of Tables for Applied Engineering Science, 2nd edition (CRC Press, Cleveland, 1976)

  33. P. Gerstner, Heat transfer through Porous multiphase systems: measurement, modelling and application in printing of coated papers, Doctoral dissertation (Aalto University, Helsinki, Finland, 2010)

  34. COMSOL Multiphysics Reference manual, Version 5.0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Songok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Songok, J., Bousfield, D., Gane, P. et al. Heat and mass transfer models to understand the drying mechanisms of a porous substrate. Eur. Phys. J. E 39, 25 (2016). https://doi.org/10.1140/epje/i2016-16025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16025-6

Keywords

Navigation