Skip to main content
Log in

Drying kinetics driven by the shape of the air/water interface in a capillary channel

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We look at the drying process in a simple glass channel with dominant capillary effects as is the case in microfluidics. We find drying kinetics commonly observed for confined geometry, namely a constant period followed by a falling rate period. From visualization of the air/water interface with high resolution, we observe that the drying rate decreases without a drying front progression although this is the usually accepted mechanism for confined geometries. We show with FEM that in our specific geometry the falling rate period is due to changes in the shape of the air-water interface at the free surface where most evaporation occurs. Our simulations show that the sensitivity of the drying rate to the shape of the first air-water interface from the sample free surface implies that slight changes of the wetting or pinning conditions can significantly modify the drying rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

F. Giorgiutti-Dauphiné & L. Pauchard

References

  1. M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 5, 1355 (2005)

    Article  Google Scholar 

  2. V. Sartre, M.C. Zaghdoudi, M. Lallemand, Int. J. Therm. Sci. 39, 498 (2000)

    Article  Google Scholar 

  3. G.M. Walker, D.J. Beebe, Lab Chip 2, 57 (2002)

    Article  Google Scholar 

  4. G. Gauthier, V. Lazarus, L. Pauchard, Langmuir 23, 4715 (2007)

    Article  Google Scholar 

  5. S.M. Yang, H. Miguez, G.A. Ozin, Adv. Funct. Mater. 12, 425 (2002)

    Article  Google Scholar 

  6. M. Prat, Int. J. Multiphase Flow 19, 691 (1993)

    Article  MATH  Google Scholar 

  7. I.N. Tsimpanogiannis, Y.C. Yortsos, S. Poulou, N. Kanellopoulos, A.K. Stubos, Phys. Rev. E 59, 4353 (1999)

    Article  ADS  Google Scholar 

  8. T.M. Shaw, Phys. Rev. Lett. 59, 1671 (1987)

    Article  ADS  Google Scholar 

  9. J. Stefan, Sitzungsber. Akad. Wiss. Wien 63, 63 (1871)

    Google Scholar 

  10. M. Prat, Int. J. Heat Mass Transf. 50, 1455 (2007)

    Article  MATH  Google Scholar 

  11. B. Camassel, N. Sghaier, M. Prat, S. Ben Nasrallah, Chem. Engin. Sci. 60, 815 (2005)

    Article  Google Scholar 

  12. J.C.T. Eijkel, H.W. Reemeijer, D.C. Hermes, J.G. Bomer, A. Van der Berg, Phys. Rev. Lett. 95, 256107 (2005)

    Article  ADS  Google Scholar 

  13. F. Chauvet, P. Duru, S. Geoffroy, M. Prat, Phys. Rev. Lett. 103, 1 (2009)

    Article  Google Scholar 

  14. H. Wong, S. Morris, C.J. Radke, J. Colloid lntreface Sci. 148, 237 (1992)

    Google Scholar 

  15. A. Yiotis, D. Salin, E. Tajer, Y. Yortsos, Phys. Rev. E 85, 046308 (2012)

    Article  ADS  Google Scholar 

  16. A. Yiotis, D. Salin, E. Tajer, Y. Yortsos, Phys. Rev. E 86, 026310 (2012)

    Article  ADS  Google Scholar 

  17. L. Pel, A. Sawdy, V. Voronina, J. Cultural Heritage 11, 59 (2010)

    Article  Google Scholar 

  18. E. Keita, P. Faure, S. Rodts, P. Coussot, Phys. Rev. E 87, 062303 (2013)

    Article  ADS  Google Scholar 

  19. P. Faure, P. Coussot, Phys. Rev. E 82, 1 (2010)

    Article  Google Scholar 

  20. N. Shahidzadeh-Bonn, A. Azouni, P. Coussot, J. Phys.: Condens. Matter 19, 112101 (2007)

    ADS  Google Scholar 

  21. N. Shokri, P. Lehmann, D. Or, Water Res. Res. 45, W02415 (2009)

    ADS  Google Scholar 

  22. M. Suzuki, S. Maeda, J. Chem. Engin. Jpn 1, 26 (1968)

    Article  Google Scholar 

  23. P. Coussot, Eur. Phys. J. B 15, 557 (2000)

    Article  ADS  Google Scholar 

  24. N. Shokri, D. Or, Water Res. Res. 47, 1 (2011)

    Article  ADS  Google Scholar 

  25. J. Li, B. Cabane, M. Sztucki, L. Goehring, Langmuir 28, 200 (2012)

    Article  Google Scholar 

  26. I. Lesov, S. Tcholokova, N. Denkov, RSC Adv. 4, 811 (2014)

    Article  Google Scholar 

  27. M. Dong, I. Chatzis, J. Colloid Interface Sci. 172, 278 (1995)

    Article  Google Scholar 

  28. S. Geoffroy, F. Plouraboué, M. Prat, O. Amyot, J. Colloid Interface Sci. 294, 165 (2006)

    Article  Google Scholar 

  29. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Keita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keita, E., Koehler, S., Faure, P. et al. Drying kinetics driven by the shape of the air/water interface in a capillary channel. Eur. Phys. J. E 39, 23 (2016). https://doi.org/10.1140/epje/i2016-16023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16023-8

Keywords

Navigation