Skip to main content
Log in

Bond lifetime and diffusion coefficient in colloids with short-range interactions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean “bond” lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B (2) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B (2) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.N. Pusey, W. van Megen, Nature 320, 340 (1986).

    Article  ADS  Google Scholar 

  2. K. Dawson, Curr. Opin. Colloid Interface Sci. 7, 218 (2002).

    Article  Google Scholar 

  3. J. Bergenholtz, M. Fuchs, Phys. Rev. E 59, 5706 (1999).

    Article  ADS  Google Scholar 

  4. J. Bergenholtz, M. Fuchs, J. Phys.: Condens. Matter 11, 10171 (1999).

    ADS  Google Scholar 

  5. K.A. Dawson, G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Phys.: Condens. Matter 13, 9113 (2001).

    ADS  Google Scholar 

  6. K.N. Pham et al., Science 296, 104 (2002).

    Article  ADS  Google Scholar 

  7. K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Phys. Rev. E 69, 011503 (2004).

    Article  ADS  Google Scholar 

  8. J. Bergenholtz, W.C.K. Poon, M. Fuchs, Langmuir 19, 4493 (2003).

    Article  Google Scholar 

  9. B. Ahlstrom, J. Bergenholtz, J. Phys.: Condens. Matter 19, 036102 (2007).

    ADS  Google Scholar 

  10. E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).

    Google Scholar 

  11. P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008).

    Article  ADS  Google Scholar 

  12. E. Zaccarelli, G. Foffi, K.A. Dawson, F. Sciortino, P. Tartaglia, Phys. Rev. E 63, 031501 (2001).

    Article  ADS  Google Scholar 

  13. G. Foffi, K.A. Dawson, S.V. Buldyrev, F. Sciortino, E. Zaccarelli, P. Tartaglia, Phys. Rev. E 65, 050802(R) (2002).

    Article  ADS  Google Scholar 

  14. E. Zaccarelli, G. Foffi, K.A. Dawson, S.V. Buldyrev, F. Sciortino, P. Tartaglia, Phys. Rev. E 66, 041402 (2002).

    Article  ADS  Google Scholar 

  15. Emanuela Zaccarelli, Francesco Sciortino, Piero Tartaglia, J. Phys.: Condens. Matter 16, S4849 (2004).

    Google Scholar 

  16. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. Lett. 88, 098301 (2002).

    Article  ADS  Google Scholar 

  17. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. E 67, 031406 (2003).

    Article  ADS  Google Scholar 

  18. Y.L. Chen, K.S. Schweizer, J. Chem. Phys. 120, 7212 (2004).

    Article  ADS  Google Scholar 

  19. G. Foffi, F. Sciortino, Phys. Rev. E 74, 050401(R) (2006).

    Article  ADS  Google Scholar 

  20. G. Foffi, C. De Michele, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 078301 (2005).

    Article  ADS  Google Scholar 

  21. M. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000).

    Article  ADS  Google Scholar 

  22. W. Götze, in Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amserdam, 1991) p. 287.

  23. G. Szamel, H. Löwen, Phys. Rev. A 44, 8215 (1991).

    Article  ADS  Google Scholar 

  24. R.J. Maldonado, M. Medina-Noyola, Phys. Rev. E 77, 051503 (2008).

    Article  ADS  Google Scholar 

  25. P. Ramírez-González, M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Sciortino et al., Comput. Phys. Commun. 169, 166 (2005).

    Article  ADS  Google Scholar 

  27. F. Sciortino, Eur. Phys. J. B 64, 505 (2008).

    Article  ADS  Google Scholar 

  28. F. Sciortino, E. Zaccarelli, Curr. Opin. Solid State Mater. Sci. 15, 246 (2011).

    Article  ADS  Google Scholar 

  29. A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009).

    Article  ADS  Google Scholar 

  30. A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 132, 174110 (2010).

    Article  ADS  Google Scholar 

  31. Ph. Germain, S. Amokrane, Phys. Rev. Lett. 102, 058301 (2009).

    Article  ADS  Google Scholar 

  32. Ph. Germain, J. Chem. Phys. 133, 044905 (2010).

    Article  ADS  Google Scholar 

  33. Ph. Germain, S. Amokrane, Phys. Rev. E 81, 011407 (2010).

    Article  ADS  Google Scholar 

  34. H.A. Kramers, Physica A 7, 284 (1940).

    MATH  MathSciNet  Google Scholar 

  35. A. Puertas, G. Odriozola, J. Phys. Chem. B 111, 5564 (2007).

    Article  Google Scholar 

  36. I. Saika-Voivod, E. Zaccarelli, F. Sciortino, S.V. Buldyrev, P. Tartaglia, Phys. Rev. E 70, 041401 (2004).

    Article  ADS  Google Scholar 

  37. S. Saw, N.L. Ellegaard, W. Kob, S. Sastry, J. Chem. Phys. 134, 164506 (2011).

    Article  ADS  Google Scholar 

  38. X.J. Cao, H.Z. Cummins, J.F. Morris, J. Colloid Interface Sci. 368, 86 (2012).

    Article  Google Scholar 

  39. F.H. Stillinger, Adv. Chem. Phys. 31, 1 (1975).

    Google Scholar 

  40. F.W. Starr, J.K. Nielsen, H.E. Stanley, Phys. Rev. E 62, 579 (2000).

    Article  ADS  Google Scholar 

  41. T. Gleim, W. Kob, K. Binder, Phys. Rev. Lett. 81, 4404 (1998).

    Article  ADS  Google Scholar 

  42. W. Gotze, Th. Voigtmann, Phys. Rev. E 67, 021502 (2003).

    Article  ADS  Google Scholar 

  43. E. Zaccarelli, S.V. Buldyrev, E. La Nave, A.J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005).

    Article  ADS  Google Scholar 

  44. B. Smit, D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002).

  45. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  46. L. Verlet, Phys. Rev. 165, 201 (1967).

    Article  ADS  Google Scholar 

  47. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  ADS  Google Scholar 

  48. F. Lado, S.M. Foiles, N.W. Ashcroft, Phys. Rev. A 28, 2374 (1983).

    Article  ADS  Google Scholar 

  49. A. Malijevski, S. Labik, Mol. Phys. 60, 663 (1987).

    Article  ADS  Google Scholar 

  50. S. Labik, A. Malijevski, Mol. Phys. 67, 431 (1989).

    Article  ADS  Google Scholar 

  51. J. Clément-Cottuz, S. Amokrane, C. Regnaut, Phys. Rev. E 51, 1692 (2000).

    Article  ADS  Google Scholar 

  52. M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A.B. Scofield, J.M. Brader, M. Fuchs, S.U. Egelhaaf, J. Chem. Phys. 130, 134907 (2009).

    Article  ADS  Google Scholar 

  53. S. Ramakrishnan, M. Fuchs, K.S. Schweizer, C.F. Zukoski, J. Chem. Phys. 116, 2201 (2002).

    Article  ADS  Google Scholar 

  54. S.A. Shah, Y.L. Chen, K.S. Schweizer, F.C. Zukoski, J. Chem. Phys. 119, 8747 (2003).

    Article  ADS  Google Scholar 

  55. F. Cardinaux, T. Gibaud, A. Stradner, Peter Schurtenberger, Phys. Rev. Lett. 99, 118301 (2007).

    Article  ADS  Google Scholar 

  56. B. Ruzicka, L. Zulian, R. Angelini, M. Sztucki, A. Moussaïd, G. Ruocco, Phys. Rev. E 77, 020402(R) (2008).

    Article  ADS  Google Scholar 

  57. Ph. Germain, J.G. Malherbe, S. Amokrane, Phys. Rev. E 70, 041409 (2004).

    Article  ADS  Google Scholar 

  58. Y. Hennequin, M. Pollard, J.S. van Duijneveldt, J. Chem. Phys. 120, 1097 (2004).

    Article  ADS  Google Scholar 

  59. S. Amokrane, J.-G. Malherbe, J. Phys.: Condens. Matter 13, 7199 (2001).

    ADS  Google Scholar 

  60. J.-G. Malherbe, C. Regnaut, S. Amokrane, Phys. Rev. E 66, 061404 (2002).

    Article  ADS  Google Scholar 

  61. A. Ayadim, J.-G. Malherbe, S. Amokrane, J. Chem. Phys. 122, 234908 (2005).

    Article  ADS  Google Scholar 

  62. Y. Rosenfeld, J. Chem. Phys. 98, 8126 (1993).

    Article  ADS  Google Scholar 

  63. T. Voigtman, EPL 96, 36006 (2011).

    Article  ADS  Google Scholar 

  64. F. Tchangnwa Nya, A. Ayadim, Ph. Germain, S. Amokrane, J. Phys.: Condens. Matter 24, 325106 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amokrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndong Mintsa, E., Germain, P. & Amokrane, S. Bond lifetime and diffusion coefficient in colloids with short-range interactions. Eur. Phys. J. E 38, 21 (2015). https://doi.org/10.1140/epje/i2015-15021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15021-8

Keywords

Navigation