Skip to main content
Log in

Numerical modeling of wind-blown sand on Mars

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the “fluid threshold”, respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the “overshoot” phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Zimbelman, Geophys. Res. Lett. 27, 1069 (2000)

    Article  ADS  Google Scholar 

  2. M.C. Bourke, K.S. Edgett, B.A. Cantor, Geomorphology 94, 247 (2008)

    Article  ADS  Google Scholar 

  3. C.J. Hansen et al., Science 331, 575 (2011)

    Article  ADS  Google Scholar 

  4. P.E. Geissler, J. Geophys. Res. 110, E02001 (2005)

    ADS  Google Scholar 

  5. N.T. Bridges et al., Geology 40, 31 (2012)

    Article  ADS  Google Scholar 

  6. E. Gardin et al., Planet. Space Sci. 60, 314 (2012)

    Article  ADS  Google Scholar 

  7. M. Golombek et al., Space Sci. Rev. 170, 641 (2012)

    Article  ADS  Google Scholar 

  8. R.A. Kerr, Science 324, 998 (2009)

    Article  Google Scholar 

  9. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Chapman and Hall, 1956)

  10. Y.P. Shao, Physics and modelling of wind erosion (Springer, 2008)

  11. X.J. Zheng, Mechanics of wind-blown sand movements (Springer, 2009)

  12. M. Balme, R. Greeley, Rev. Geophys. 44, RG3003 (2006)

    ADS  Google Scholar 

  13. R. Sullivan et al., J. Geophys. Res. 113, E06S07 (2008)

    ADS  Google Scholar 

  14. J.F. Kok, Phys. Rev. Lett. 104, 074502 (2010)

    Article  ADS  Google Scholar 

  15. J.F. Kok, Geophys. Res. Lett. 37, L12202 (2010)

    Article  ADS  Google Scholar 

  16. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, J. Geophys. Res. 106, 23653 (2001)

    Article  ADS  Google Scholar 

  17. B.R. White, J. Geophys. Res. 84, 4643 (1979)

    Article  ADS  Google Scholar 

  18. R. Greeley, J.D. Iversen, Wind as a geological process on Earth, Mars, Venus and Titan (Cambridge, 1985)

  19. R. Greeley, Planet. Space Sci. 50, 151 (2002)

    Article  ADS  Google Scholar 

  20. R. Greeley et al., J. Geophys. Res. 111, E02S09 (2006)

    ADS  Google Scholar 

  21. B.R. White, R. Greeley, J.D. Iversen, J.B. Pollack, J. Geophys. Res. 81, 5643 (1976)

    Article  ADS  Google Scholar 

  22. M.P. Almeida, E.J. Parteli, J.S. Andrade, H.J. Herrmann, P. Natl. Acad. Sci. U.S.A. 105, 6222 (2008)

    Article  ADS  Google Scholar 

  23. P. Claudin, B. Andreotti, Earth Planet. Sci. Lett. 252, 30 (2006)

    Article  ADS  Google Scholar 

  24. J.E. Ungar, P.K. Haff, Sedimentology 34, 289 (1987)

    Article  ADS  Google Scholar 

  25. B. Androtti, J. Fluid. Mech. 510, 47 (2004)

    Article  ADS  Google Scholar 

  26. J.F. Kok, N.O. Renno, J. Geophys. Res. 114, D17204 (2009)

    Article  ADS  Google Scholar 

  27. R. Greeley et al., Geophys. Res. Lett. 7, 121 (1980)

    Article  ADS  Google Scholar 

  28. J.D. Iversen, B.R. White, Sedimentology 29, 111 (1982)

    Article  ADS  Google Scholar 

  29. J.L. Sutton, C.B. Leovy, J.E. Tillman, J. Atmos. Sci. 35, 2346 (1978)

    Article  ADS  Google Scholar 

  30. R.E. Arvidson et al., Science 222, 463 (1983)

    Article  ADS  Google Scholar 

  31. R. Sullivan et al., J. Geophys. Res. 105, 24547 (2000)

    Article  ADS  Google Scholar 

  32. L.K. Fenton, Geophys. Res. Lett. 33, L20201 (2006)

    Article  ADS  Google Scholar 

  33. D.J. Jerolmack et al., J. Geophys. Res. 111, E12S02 (2006)

    ADS  Google Scholar 

  34. V. Schatz et al., J. Geophys. Res. 111, E04006 (2006)

    ADS  Google Scholar 

  35. W. Chepil, J. Soil Water Conserv. 14, 214 (1959)

    Google Scholar 

  36. N. Woodruff, F. Siddoway, Soil Sci. Soc. Am. J. 29, 602 (1965)

    Article  Google Scholar 

  37. D.W. Fryrear, A. Saleh, Soil Sci. 161, 398 (1996)

    Article  Google Scholar 

  38. B. Andreotti, P. Claudin, O. Pouliquen, Geomorphology 123, 343 (2010)

    Article  ADS  Google Scholar 

  39. Y.P. Shao, A. Li, Bound-Lay. Meteorol. 91, 199 (1999)

    Article  ADS  Google Scholar 

  40. T.L. Bo, H. Zhang, W. Zhu, X. Zheng, J. Geophys. Res. 118, 4494 (2013)

    Google Scholar 

  41. J. Smagorinsky, Mon. Weather Rev. 91, 99 (1963)

    Article  ADS  Google Scholar 

  42. H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method (Prentice Hall, 2007)

  43. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D.B. Karam, Rep. Prog. Phys. 75, 106901 (2012)

    Article  ADS  Google Scholar 

  44. P.J. Murphy, H. Hooshiari, J. Hydraul. Div 108, 1251 (1982)

    Google Scholar 

  45. M.V. Carneiro, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)

    Article  ADS  Google Scholar 

  46. M.V. Carneiro, N.A.M. Araujo, T. Pahtz, H.J. Herrmann, Phys. Rev. Lett. 111, 058001 (2013)

    Article  ADS  Google Scholar 

  47. N.S. Cheng, J. Hydraul. Eng. 123, 149 (1997)

    Article  Google Scholar 

  48. G.S. Ma, X.J. Zheng, Eur. Phys. J. E 34, 1 (2011)

    Article  MathSciNet  Google Scholar 

  49. R.S. Anderson, M. Sørensen, B.B. Willetts, Acta. Mech. Suppl. 1, 1 (1991)

    Article  Google Scholar 

  50. K.S. Edgett, P.R. Christensen, J. Geophys. Res. 96, 22765 (1991)

    Article  ADS  Google Scholar 

  51. L.K. Fenton, A.D. Toigo, M.I. Richardson, J. Geophys. Res. 110, E06005 (2005)

    ADS  Google Scholar 

  52. B.T. Werner, J. Geol. 98, 1 (1990)

    Article  ADS  Google Scholar 

  53. Y.H. Zhou, W.Q. Li, X.J. Zheng, J. Geophys. Res. 111, D15108 (2006)

    Article  ADS  Google Scholar 

  54. D. Beladjine, M. Ammi, L. Oger, A. Valance, Phys. Rev. E 75, 061305 (2007)

    Article  ADS  Google Scholar 

  55. M.A. Rice, B.B. Willetts, I.K. McEwan, Sedimentology 42, 695 (1995)

    Article  ADS  Google Scholar 

  56. Y.P. Shao, M.R. Raupach, J. Geophys. Res. 97, 20559 (1992)

    Article  ADS  Google Scholar 

  57. R. Kawamura, Tokyo Daigaku Rikogaku Kenkyusho Hokoku 5, 95 (1951)

    Google Scholar 

  58. H. Lettau, K. Lettau, Exploring the world’s driest climate (Center for Climatic Research, Institute for Environmental Studies, University of Wisconsin-Madison, 1978)

  59. B.R. White, H. Mounla, Acta. Mech. Suppl. 1, 145 (1991)

    Article  Google Scholar 

  60. Y.H. Zhou, X. Guo, X.J. Zheng, Phys. Rev. E 66, 021305 (2002)

    Article  ADS  Google Scholar 

  61. K. Kroy, S. Fischer, B. Obermayer, J. Phys-Condens. Mat. 17, S1229 (2005)

    Article  ADS  Google Scholar 

  62. E.J.R. Parteli, O. Durán, H.J. Herrmann, Phys. Rev. E 75, 011301 (2007)

    Article  ADS  Google Scholar 

  63. E.J.R. Parteli, H.J. Herrmann, Phys. Rev. Lett. 98, 198001 (2007)

    Article  ADS  Google Scholar 

  64. T. Pähtz, J.F. Kok, E.J.R. Parteli, H.J. Herrmann, Phys. Rev. Lett. 111, 218002 (2013)

    Article  ADS  Google Scholar 

  65. T. Pähtz, E.J.R. Parteli, J.F. Kok, H.J. Herrmann, Phys. Rev. E 89, 052213 (2014)

    Article  ADS  Google Scholar 

  66. R.S. Anderson, P.K. Haff, Acta. Mech. Suppl. 1, 21 (1991)

    Article  Google Scholar 

  67. T. Pahtz, J.F. Kok, H.J. Herrmann, New J. Phys. 14, 043035 (2012)

    Article  ADS  Google Scholar 

  68. E.J.R. Parteli, H.J. Herrmann, Phys. Rev. E 76, 041307 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Bo, T. & Zheng, X. Numerical modeling of wind-blown sand on Mars. Eur. Phys. J. E 37, 80 (2014). https://doi.org/10.1140/epje/i2014-14080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14080-7

Keywords

Navigation