Skip to main content
Log in

The secondary buckling transition: Wrinkling of buckled spherical shells

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We theoretically explain the complete sequence of shapes of deflated spherical shells. Decreasing the volume, the shell remains spherical initially, then undergoes the classical buckling instability, where an axisymmetric dimple appears, and, finally, loses its axisymmetry by wrinkles developing in the vicinity of the dimple edge in a secondary buckling transition. We describe the first axisymmetric buckling transition by numerical integration of the complete set of shape equations and an approximate analytic model due to Pogorelov. In the buckled shape, both approaches exhibit a locally compressive hoop stress in a region where experiments and simulations show the development of polygonal wrinkles, along the dimple edge. In a simplified model based on the stability equations of shallow shells, a critical value for the compressive hoop stress is derived, for which the compressed circumferential fibres will buckle out of their circular shape in order to release the compression. By applying this wrinkling criterion to the solutions of the axisymmetric models, we can calculate the critical volume for the secondary buckling transition. Using the Pogorelov approach, we also obtain an analytical expression for the critical volume at the secondary buckling transition: The critical volume difference scales linearly with the bending stiffness, whereas the critical volume reduction at the classical axisymmetric buckling transition scales with the square root of the bending stiffness. These results are confirmed by another stability analysis in the framework of Donnel, Mushtari and Vlasov (DMV) shell theory, and by numerical simulations available in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Quilliet, C. Zoldesi, C. Riera, A. van Blaaderen, A. Imhof, Eur. Phys. J. E 27, 13 (2008) 32.

    Article  Google Scholar 

  2. S.S. Datta, H.C. Shum, D.A. Weitz, Langmuir 26, 18612 (2010).

    Article  Google Scholar 

  3. S.S. Datta et al., Phys. Rev. Lett. 109, 1 (2012).

    Article  Google Scholar 

  4. G.A. Vliegenthart, G. Gompper, New J. Phys. 13, 045020 (2011).

    Article  ADS  Google Scholar 

  5. C. Quilliet, Eur. Phys. J. E. 35, 48 (2012).

    Article  Google Scholar 

  6. A. Vaziri, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 105, 7913 (2008).

    Article  ADS  Google Scholar 

  7. A. Vaziri, Thin-Walled Struct. 47, 692 (2009).

    Article  Google Scholar 

  8. D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Phys. Rev. Lett. 107, 174301 (2011).

    Article  ADS  Google Scholar 

  9. L. Pauchard, S. Rica, Philos. Mag. B 78, 225 (1998).

    Article  ADS  Google Scholar 

  10. S. Komura, K. Tamura, T. Kato, Eur. Phys. J. E 18, 343 (2005).

    Article  Google Scholar 

  11. L. Landau, E. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, 1986).

  12. E. Ventsel, T. Krauthammer, Thin Plates and Shells (CRC Press, 2001).

  13. W. Koiter, Proc. Kon. Nederl. Akad. Wet. Amsterdam B 72, 40 (1969).

    MATH  Google Scholar 

  14. L. Bauer, E.L. Reiss, H.B. Keller, Commun. Pure Appl. Math. 23, 529 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Knoche, J. Kierfeld, Phys. Rev. E 84, 046608 (2011).

    Article  ADS  Google Scholar 

  16. A.V. Pogorelov, Bendings of Surfaces and Stability of Shells (American Mathematical Society, 1988).

  17. E.H. Yong, D.R. Nelson, L. Mahadevan, Phys. Rev. Lett. 111, 177801 (2013).

    Article  ADS  Google Scholar 

  18. F.I. Niordson, Shell Theory (Elsevier Science Publishers B.V., Amsterdam, 1985). .

  19. S. Knoche, J. Kierfeld, EPL 106, 24004 (2014).

    Article  ADS  Google Scholar 

  20. A. Libai, J.G. Simmonds, The Nonlinear Theory of Elastic Shells (Cambridge University Press, 1998).

  21. C. Pozrikidis, Modeling and Simulation of Capsules and Biological Cells (Chapman and Hall/CRC, 2003).

  22. S.P. Timoshenko, J.M. Gere, Theory of elastic stability (McGraw-Hill, New York, 1961).

  23. E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  24. Y.W. Wong, S. Pellegrino, J. Mech. Mater. Struct. 1, 27 (2006).

    Article  Google Scholar 

  25. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 2010).

  26. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, 2007).

  27. N.-C. Huang, J. Appl. Mech. 31, 447 (1964).

    Article  ADS  Google Scholar 

  28. D. Bushnell, AIAA J. 5, 1455 (1967).

    Article  ADS  MATH  Google Scholar 

  29. J. Hohage, Modellierung des Deformationsverhaltens elastischer Membranen mittels triangulierter Oberflächen, Master's thesis, TU Dortmund (2012).

  30. C.J. Wischnewski, Numerische Untersuchung triangulierter Modelle elastischer Kapseln, Bachelor thesis, Technische Universität Dortmund (2013).

  31. B. Audoly, Y. Pomeau, Elasticity and Geometry: From hair curls to the non-linear response of shells (OUP Oxford, 2010).

  32. P. Swarztrauber, R. Sweet, SIAM J. Numer. Anal. 10, 900 (1973).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M.-C. Lai, Numer. Methods Partial Differ. Equ. 17, 199 (2001).

    Article  MATH  Google Scholar 

  34. M.-C. Lai, W.-C. Wang, Numer. Methods Partial Differ. Equ. 18, 56 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Knoche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knoche, S., Kierfeld, J. The secondary buckling transition: Wrinkling of buckled spherical shells. Eur. Phys. J. E 37, 62 (2014). https://doi.org/10.1140/epje/i2014-14062-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14062-9

Keywords

Navigation