Skip to main content

Advertisement

Log in

Numerical simulation of wind sand movement in straw checkerboard barriers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Straw checkerboard barrier (SCB) is the most representative antidesertification measure and plays a significant role in antidesertification projects. Large-eddy simulation and discrete-particle tracing were used to numerically simulate the wind sand movement inside the straw checkerboard barrier (SCB), study the movement characteristics of sand particles, find the transverse velocities of sand particles and flow field, and obtain the contour of the transverse velocity of coupled wind field within the SCB. The results showed that 1) compared with that at the inlet of the SCB, the sand transport rate inside the SCB greatly decreases and the speed of sand grain movement also evidently drops, indicating that the SCB has very good sand movement preventing and fixing function; 2) within the SCB there exists a series of unevenly distributed eddies of wind sand flow, their strength decreases gradually with increasing the transverse distance; 3) affected by eddies or reflux, sand particles carried by the wind sand flow have to drop forward and backward the two interior walls inside the SCB, respectively, forming a v-shaped sand trough; 4) the sand transport rate gradually decreases with increasing number of SCBs, which reveals that the capacity of the wind field to transport sand particles decreases. This research is of significance in sandstorm and land desertification control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Zheng, Mechanics of Wind-blown Sand Movement (Springer, 2009)

  2. T. Wang, G.T. Wang, Z.G. Qian, G.S. Yang, J.J. Qu, D.L. Li, Chin. J. Desert Res. 21, 322 (2001)

    Google Scholar 

  3. X.J. Zheng, Y.H. Zhou, Mech. Engin. 25, 11 (2003)

    Google Scholar 

  4. Kenneth Pye, Haim Tsoar, Aeolian Sand and Sand Dunes (Springer, 2009)

  5. Katsumori Hatanaka, Shiataro Hotta, Int. J. Numer. Methods Fluids 24, 1291 (1997)

    Article  MATH  Google Scholar 

  6. John D. Wilson, J. Appl. Meteorol. 43, 1392 (2004)

    Article  ADS  Google Scholar 

  7. J.P. Bitog, I.B. Lee, M.H. Shin, et al., Atmos. Environ. 43, 4612 (2009)

    Article  ADS  Google Scholar 

  8. T. Bouvet, J.D. Wilson, A. Tuzet, J. Appl. Meteorol. Climatol. 45, 1332 (2006)

    Article  ADS  Google Scholar 

  9. J.L. Santiago, F. Martin, A. Cuerva, et al., Atmos. Environ. 41, 6406 (2007)

    Article  ADS  Google Scholar 

  10. Z.T. Wang, X.J. Zheng, Chin. J. Desert Res. 22, (2002)

  11. Z.D. Zhu, Z.L. Zhao, Y.Q. Lin, Desert Control Engineering (Environmental Science Press, Beijing, 1998)

  12. X.W. Liu, Wind tunnel experiments of Straw checkerboard barriers (Ningxia People's Publishing House, Yinchuan, 1988).

  13. M.V. Carneiro, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)

    Article  ADS  Google Scholar 

  14. B.S. Anderson, P.K. Haff, Wind modification and bed response during saltation of sand in air (Springer-Verlag, 1991)

  15. Y.P. Shao, A. Li, Boundary-Layer Meteorol. 91, 199 (1999)

    Article  ADS  Google Scholar 

  16. D.J. Tritton, Physical Fluid Dynamics (van Nostrand Reinhold Company, 1977) pp. 21-23

  17. B.R. White, J.C. Schulz, J. Fluid Mech. 81, 497 (1977)

    Article  ADS  Google Scholar 

  18. B.B. Willetts, M.A. Rice, Acta Mechan. 63, 255 (1986)

    Article  Google Scholar 

  19. B.B. Willetts, I.K. McEwan, M.A. Rice, Acta Mechan. (suppl.1) 23, (1991)

    Google Scholar 

  20. I.K. McEwan, B.B. Willetts, J. Fluid Mech. 52, 99 (1993)

    Article  ADS  Google Scholar 

  21. S. Mitha, M.Q. Tran, B.T. Werner, P.K. Haff, Acta Mech. 63, 267 (1986)

    Article  Google Scholar 

  22. I. Vinkovic, C. Aguirre, M. Ayrault, S. Simoëns, Boundary-Layer Meteorol. 121, 283 (2006)

    Article  ADS  Google Scholar 

  23. B.T. Werner, J. Geol. 98, 1 (1990)

    Article  ADS  Google Scholar 

  24. Marco C. M. de M. Luna M, Eric J. R. Parteli, Orencio Durán, et al., Geomorphology 129, 215 (2011)

    Article  ADS  Google Scholar 

  25. Marco C. M. de M. Luna M, Eric J. R. Parteli, Hans J. Herrmann, Geomorphology 159-160, 169 (2012)

    Google Scholar 

  26. T.L. Bo, X.J. Zheng, Geomorphology 180-181, 24 (2013)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, N., Xia, X. & Tong, D. Numerical simulation of wind sand movement in straw checkerboard barriers. Eur. Phys. J. E 36, 99 (2013). https://doi.org/10.1140/epje/i2013-13099-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13099-6

Keywords

Navigation