Skip to main content

Advertisement

Log in

Experimental study of a vertical column of grains submitted to a series of impulses

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report physical phenomena occurring in a vertical Newton's cradle system. A dozen of metallic spheres are placed in a vertical tube. Therefore, the gravity induces a non-uniform pre-compression of the beads and a restoring force. An electromagnetic hammer hits the bottom bead at frequencies tuned between 1 and 14Hz. The motion of the beads are recorded using a high-speed camera. For low frequencies, the pulses travel through the pile and expel a few beads from the surface. Then, after a few bounces of these beads, the system relaxes to the chain of contacting grains. When the frequency is increased, the number of fluidized beads increases. In the fluidized part of the pile, adjacent beads are bouncing in opposition of phase. This phase locking of the top beads is observed even when the bottom beads experience chaotic motions. While the mechanical energy increases monotically with the bead vertical position, heterogeneous patterns in the kinetic energy distribution are found when the system becomes fluidized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Herrmann, M. Seitz, Am. J. Phys. 50, 977 (1982)

    Article  ADS  Google Scholar 

  2. M. Reinsch, Am. J. Phys. 62, 271 (1993)

    Article  ADS  Google Scholar 

  3. S. Hutzler, G. Delaney, D. Weaire, Finn MacLeod, Am. J. Phys. 72, 1508 (2004)

    Article  ADS  Google Scholar 

  4. H. Hertz, J. Reine. Angew. Math. 92, 156 (1881)

    Google Scholar 

  5. D.R. Lovett, K.M. Moulding, S. Anketell-Jones, Eur. J. Phys. 9, 323 (1998)

    Article  Google Scholar 

  6. B. Leroy, Am. J. Phys. 53, 346 (1985)

    Article  ADS  Google Scholar 

  7. S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Phys. Rep. 462, 21 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. R.L. Doney, J.H. Agui, S. Sen, J. Appl. Phys. 106, 064905 (2009)

    Article  ADS  Google Scholar 

  9. B.M. Shah, J.J. Nudell, K.R. Kao, L.M. Keer, Q.J. Wang, K. Zhou, J. Sound Vibration 330, 182 (2011)

    Article  ADS  Google Scholar 

  10. G. Lumay, S. Dorbolo, N. Vandewalle, Phys. Rev. E 80, 041302 (2009)

    Article  ADS  Google Scholar 

  11. G. Lumay, N. Vandewalle, Phys. Rev. E 82, 040301 (2010)

    Article  ADS  Google Scholar 

  12. V.F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, 733 (1983)

    Article  ADS  Google Scholar 

  13. A. Chatterjee, Phys. Rev. E 59, 5912 (1999)

    Article  ADS  Google Scholar 

  14. C. Coste, E. Falcon, S. Fauve, Phys. Rev. E 56, 6104 (1997)

    Article  ADS  Google Scholar 

  15. J. Hong, J.-Y. Ji, H. Kim, Phys. Rev. Lett. 82, 3058 (1999)

    Article  ADS  Google Scholar 

  16. J.B. Knight, C.G. Fandrich, Chun Ning Lau, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 51, 3957 (1995)

    Article  ADS  Google Scholar 

  17. P. Richard, M. Nicodemi, R. Delannay, P. Ribière, D. Bideau, Nat. Mater. 4, 121 (2005)

    Article  ADS  Google Scholar 

  18. G. Lumay, N. Vandewalle, Phys. Rev. Lett. 95, 028002 (2005)

    Article  ADS  Google Scholar 

  19. F. Ludewig, S. Dorbolo, N. Vandewalle, Phys. Rev. E 70, 051304 (2004)

    Article  ADS  Google Scholar 

  20. J.E. Fiscina, G. Lumay, F. Ludewig, N. Vandewalle, Phys. Rev. Lett. 105, 048001 (2010)

    Article  ADS  Google Scholar 

  21. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004)

    Article  ADS  Google Scholar 

  22. A. Garcimartin, D. Maza, J.L. Ilquimiche, I. Zuriguel, Phys. Rev. E 65, 031303 (2002)

    Article  ADS  Google Scholar 

  23. P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse, Phys. Rev. Lett. 95, 258001 (2005)

    Article  ADS  Google Scholar 

  24. E. Cément, L. Vanel, J. Rajchenbach, J. Duran, Phys. Rev. E 53, 2972 (1996)

    Article  ADS  Google Scholar 

  25. E. Clément, L. Labous, Phys. Rev. E 62, 8314 (2000)

    Article  ADS  Google Scholar 

  26. J.C. Géminard, C. Laroche, Phys. Rev. E 68, 031305 (2003)

    Article  ADS  Google Scholar 

  27. T. Gilet, N. Vandewalle, S. Dorbolo, Phys. Rev. E 79, 055201R (2009)

    Article  ADS  Google Scholar 

  28. E. Falcon, C. Laroche, S. Fauve, C. Coste, Eur. Phys. J. B 5, 111 (1998)

    Article  ADS  Google Scholar 

  29. S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Phys. Rev. E 49, 1634 (1994)

    Article  ADS  Google Scholar 

  30. W.F. Smith, J. Hashemi, in Foundations of Material Science and Engineering, 4th edition (McGraw-Hill, 2001)

  31. L. Tonks, Phys. Rev. 50, 955 (1936)

    Article  ADS  Google Scholar 

  32. E. Pinney, Ordinary Difference-Differential Equations (University of California Press, Berkley and Los Angeles, 1955)

  33. O.I. Gerasymov, N. Vandewalle, G. Lumay, S. Dorbolo, A. Spivak, Ukr. J. Phys. 53, 1128 (2008)

    Google Scholar 

  34. N.B. Tufillaro, T. Abbott, J.P. Reilly, An experimental approach to non linear dynamics and chaos (Addison-Wesley, Reading, MA, 1992)

  35. D. Terwagne, T. Gilet, N. Vandewalle, S. Dorbolo, Langmuir 26, 11680 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vandewalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumay, G., Dorbolo, S., Gerasymov, O. et al. Experimental study of a vertical column of grains submitted to a series of impulses. Eur. Phys. J. E 36, 16 (2013). https://doi.org/10.1140/epje/i2013-13016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13016-1

Keywords

Navigation