Skip to main content
Log in

Structure and dynamics of a polymer melt at an attractive surface

The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the structural and dynamic properties of a polymer melt in the vicinity of an adhesive solid substrate by means of Molecular Dynamics simulation at various degrees of surface adhesion. The properties of the individual polymer chains are examined as a function of the distance to the interface and found to agree favorably with theoretical predictions. Thus, the adsorbed amount at the adhesive surface is found to scale with the macromolecule length as \(\Gamma \propto \sqrt N\), regardless of the adsorption strength. For chains within the range of adsorption we analyze in detail the probability size distributions of the various building blocks: loops, tails and trains, and find that loops and tails sizes follow power laws while train lengths decay exponentially thus confirming some recent theoretical results. The chain dynamics as well as the monomer mobility are also investigated and found to depend significantly on the proximity of a given layer to the solid adhesive surface with onset of vitrification for sufficiently strong adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G.J. Fleer, M.A. Cohen-Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman-Hall, London, 1993).

  2. S. Wu, Polymer Interface and Adhesion (Marcel Dekker, New York, 1982).

  3. R. Richert, Annu. Rev. Phys. Chem. 62, 65 (2011).

    Article  ADS  Google Scholar 

  4. F. Varnik, K. Binder, Int. J. Mat. Res. 100, 1494 (2009).

    Article  Google Scholar 

  5. K.Ch. Daoulas, V.A. Harmandaris, V.G. Mavrantzas, Macromolecules 38, 5780 (2005).

    Article  ADS  Google Scholar 

  6. V.A. Harmandaris, K.Ch. Daoulas, V.G. Mavrantzas, Macromolecules 38, 5796 (2005).

    Article  ADS  Google Scholar 

  7. L. Yelash, P. Virnau, K. Binder, W. Paul, Phys. Rev. E 82, 050801(R) (2010).

    Article  ADS  Google Scholar 

  8. R. Hetschke, B.L. Schürmann, J.P. Rabe, J. Chem. Phys. 96, 6213 (1992).

    Article  ADS  Google Scholar 

  9. I. Bitsanis, G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990).

    Article  ADS  Google Scholar 

  10. I. Bitsanis, G. Ten Brinke, J. Chem. Phys. 99, 3100 (1993).

    Article  ADS  Google Scholar 

  11. G.D. Smith, D. Bedrov, O. Borodin, Phys. Rev. Lett. 90, 226103 (2003).

    Article  ADS  Google Scholar 

  12. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002).

    Article  ADS  Google Scholar 

  13. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004).

    Article  Google Scholar 

  14. F. Varnik, J. Baschnagel, K. Binder, Phys. Rev. E 65, 021507 (2002).

    Article  ADS  Google Scholar 

  15. F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Article  Google Scholar 

  16. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    Article  ADS  Google Scholar 

  17. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. B 44, 2951 (2006).

    Article  Google Scholar 

  18. S. Peter, H. Meyer, J. Baschnagel, R. Seemann, J. Phys.: Condens. Matter 19, 205119 (2007).

    Article  ADS  Google Scholar 

  19. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 84, 178 (1980).

    Article  Google Scholar 

  20. C.A.J. Hoeve, E.A. DiMarzio, P. Peyser, J. Chem. Phys. 42, 2558 (1965).

    Article  ADS  Google Scholar 

  21. G.D. Smith, D.Y. Yoon, R.L. Jaffe, Macromolecules 25, 7011 (1992).

    Article  ADS  Google Scholar 

  22. T. Matsuda, G.D. Smith, R.G. Winkler, D.Y. Yoon, Macromolecules 28, 165 (1995).

    Article  ADS  Google Scholar 

  23. S. Bhattacharya, V.G. Rostiashvili, A. Milchev, T.A. Vilgis, Macromolecules 42, 2236 (2009).

    Article  ADS  Google Scholar 

  24. S. Bhattacharya, A. Milchev, V.G. Rostiashvili, A.Y. Grosberg, T.A. Vilgis, Phys. Rev. E 77, 061603 (2008).

    Article  ADS  Google Scholar 

  25. I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16, 1911 (2006).

    Article  Google Scholar 

  26. G. ten Brinke, D. Ausserre, G. Hadziioannou, J. Chem. Phys. 89, 4374 (1988).

    Article  ADS  Google Scholar 

  27. S.K. Kumar, M. Vacatello, D.Y. Yoon, J. Chem. Phys. 89, 5206 (1988).

    Article  ADS  Google Scholar 

  28. D.N. Theodorou, Macromolecules 21, 1391 (1988).

    Article  ADS  Google Scholar 

  29. D.N. Theodorou, Macromolecules 21, 1400 (1988).

    Article  ADS  Google Scholar 

  30. M. Müller, L.G. MacDowell, A. Yethiraj, J. Chem. Phys. 118, 2929 (2003).

    Article  ADS  Google Scholar 

  31. B. Duplantier, J. Stat. Phys. 54, 581 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Doi, S.F. Edwards, in The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

  33. M.H. Cohen, D. Turnbull, J. Chem. Phys. 34, 120 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Virgiliis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Virgiliis, A., Milchev, A., Rostiashvili, V.G. et al. Structure and dynamics of a polymer melt at an attractive surface. Eur. Phys. J. E 35, 97 (2012). https://doi.org/10.1140/epje/i2012-12097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12097-6

Keywords

Navigation