Skip to main content
Log in

How flow changes polymer depletion in a slit

The European Physical Journal E Aims and scope Submit manuscript

Abstract

A theoretical model is developed for predicting dynamic polymer depletion under the influence of fluid flow. The results are established by combining the two-fluid model and the self-consistent field theory. We consider a uniform fluid flow across a slit containing a solution with polymer chains. The two parallel and infinitely long walls are permeable to solvent only and the polymers do not adsorb to these walls. For a weak flow and a narrow slit, an analytic expression is derived to describe the steady-state polymer concentration profiles in a \( \Theta\) -solvent. In both \( \Theta\) - and good-solvents, we compute the time evolution of the concentration profiles for various flow rates characterized by the Peclet number. The model reveals the interplay of depletion, solvent condition, slit width, and the relative strength of the fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman and Hall, New York, 1993)

  2. E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983)

    Article  ADS  Google Scholar 

  3. A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E 59, 6853 (1999)

    Article  ADS  Google Scholar 

  4. G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1 (2008)

    Article  Google Scholar 

  5. P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

  6. G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromolecules 36, 7857 (2003)

    Article  ADS  Google Scholar 

  7. G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromol. Theory Sim. 16, 531 (2007)

    Article  Google Scholar 

  8. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    ADS  Google Scholar 

  9. A. Vrij, Pure Appl. Chem. 48, 471 (1976)

    Article  Google Scholar 

  10. R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Macromolecules 33, 177 (2000)

    Article  ADS  Google Scholar 

  11. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)

    Article  ADS  Google Scholar 

  12. S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)

    Article  ADS  Google Scholar 

  13. E.J. Meijer, D. Frenkel, J. Chem. Phys. 100, 6873 (1994)

    Article  ADS  Google Scholar 

  14. R. Tuinier, P.A. Smith, W.C.K. Poon, S.U. Egelhaaf, D.G.A.L. Aarts, H.N.W. Lekkerkerker, G.J. Fleer, EPL 82, 68002 (2008)

    Article  ADS  Google Scholar 

  15. R. Tuinier, T. Taniguchi, J. Phys: Condens. Matter L9, 17 (2005)

    Google Scholar 

  16. E. Duering, Y. Rabin, Macromolecules 23, 2232 (1990)

    Article  ADS  Google Scholar 

  17. R. Tuinier, J.K.G. Dhont, T.-H. Fan, Europhys. Lett. 75, 929 (2006)

    Article  ADS  Google Scholar 

  18. T.-H. Fan, J.K.G. Dhont, R. Tuinier, Phys. Rev. E 75, 011803 (2007)

    Article  ADS  Google Scholar 

  19. T.-H. Fan, R. Tuinier, Soft Matter 6, 647 (2010)

    Article  ADS  Google Scholar 

  20. T. Odijk, Physica A 337, 389 (2004)

    Article  ADS  Google Scholar 

  21. M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)

    Article  Google Scholar 

  22. D.M. Hall, T. Lookman, G.H. Fredrickson, S. Banerjee, J. Comput. Phys. 244, 681 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Pasch, B. Trathnigg, HPLC of polymers (Springer, Berlin, Heidelberg, New York, 1997)

  24. H. Tanaka, Phys. Rev. Lett. 71, 3158 (1996)

    Article  ADS  Google Scholar 

  25. H. Tanaka, J. Phys. Condens. Matter. 12, R207 (2000)

    Article  ADS  Google Scholar 

  26. M. Takenaka, H. Takeno, T. Hashimoto, M. Nagao, J. Chem. Phys. 124, 104904 (2006)

    Article  ADS  Google Scholar 

  27. N. Toyoda, M. Takenaka, S. Saito, T. Hashimoto, Polymer 42, 9193 (2001)

    Article  Google Scholar 

  28. M. Takenaka, H. Takeno, H. Hasegawa, S. Saito, T. Hashimoto, M. Nagao, Phys. Rev. E 65, 021806 (2002)

    Article  ADS  Google Scholar 

  29. T. Imaeda, A. Furukawa, A. Onuki, Phys. Rev. E 70, 051503 (2004)

    Article  ADS  Google Scholar 

  30. T. Taniguchi, A. Onuki, Phys. Rev. Lett. 77, 4910 (1996)

    Article  ADS  Google Scholar 

  31. E. Helfand, G.H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989)

    Article  ADS  Google Scholar 

  32. S.T. Milner, Phys. Rev. E 48, 3674 (1993)

    Article  ADS  Google Scholar 

  33. M. Koga, M. Takenaka, T. Hashimoto, T. Inoue, H. Watanabe, J. Chem. Phys. 126, 164911 (2008)

    Google Scholar 

  34. H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg 2011)

  35. A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.P. Hansen, J. Chem. Phys. 116, 10547 (2002)

    Article  ADS  Google Scholar 

  36. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Clarendon Press, Oxford, 2006)

  37. T. Taniguchi, T. Kawakatsu, K. Kawasaki, AIP Conf. Proc. 256, 503 (1992)

    Article  ADS  Google Scholar 

  38. E. Eisenriegler, A. Hanke, S. Dietrich, J. Chem. Phys. 54, 1134 (1996)

    Google Scholar 

  39. E. Eisenriegler, Polymers near Surfaces (World Scientific, Singapore, 1993)

  40. E. Eisenriegler, J. Chem. Phys. 116, 449 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Taniguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, T., Arai, Y., Tuinier, R. et al. How flow changes polymer depletion in a slit. Eur. Phys. J. E 35, 88 (2012). https://doi.org/10.1140/epje/i2012-12088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12088-7

Keywords

Navigation