Skip to main content
Log in

Optohydrodynamics of soft fluid interfaces: Optical and viscous nonlinear effects

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Recent experimental developments showed that the use of the radiation pressure, induced by a continuous laser wave, to control fluid-fluid interface deformations at the microscale, represents a very promising alternative to electric or magnetic actuation. In this article, we solve numerically the dynamics and steady state of the fluid interface under the effects of buoyancy, capillarity, optical radiation pressure and viscous stress. A precise quantitative validation is shown by comparison with experimental data. New results due to the nonlinear dependence of the optical pressure on the angle of incidence are presented, showing different morphologies of the deformed interface going from needle-like to finger-like shapes, depending on the refractive index contrast. In the transient regime, we show that the viscosity ratio influences the time taken for the deformation to reach steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.K. Wohlhuter, O.A. Basaran, J. Fluid Mech. 235, 481 (1992)

    Article  MATH  ADS  Google Scholar 

  2. J.D. Sherwood, J. Fluid Mech. 188, 133 (1987)

    Article  ADS  Google Scholar 

  3. A. Ashkin, J.M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973)

    Article  ADS  Google Scholar 

  4. R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007)

    Article  ADS  Google Scholar 

  5. J.Z. Zhang, R.K. Chang, Opt. Lett. 13, 916 (1988)

    Article  ADS  Google Scholar 

  6. A. Casner, J.P. Delville, Phys. Rev. Lett. 87, 054503 (2001)

    Article  ADS  Google Scholar 

  7. A. Casner, J.P. Delville, Phys. Rev. Lett. 90, 144503 (2003)

    Article  ADS  Google Scholar 

  8. K. Sakai, D. Mizuno, K. Takagi, Phys. Rev. E 63, 046302 (2001)

    Article  ADS  Google Scholar 

  9. S. Mitani, K. Sakai, Phys. Rev. E 66, 031604 (2002)

    Article  ADS  Google Scholar 

  10. Y. Yoshitake, S. Mitani, K. Sakai, K. Takagi, J. Appl. Phys. 97, 024901 (2005)

    Article  ADS  Google Scholar 

  11. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, J. Kas, Phys. Rev. Lett. 94, 098103 (2005)

    Article  ADS  Google Scholar 

  12. A.V. Kats, I.S. Spevak, Sov. J. Quantum Electron. 9, 857 (1979)

    Article  ADS  Google Scholar 

  13. A. Casner, J.P. Delville, Opt. Lett. 26, 18 (2001)

    Article  Google Scholar 

  14. I.I. Komissarova, G.V. Ostrovskaya, E.N. Shedova, Opt. Commun. 66, 15 (1988)

    Article  ADS  Google Scholar 

  15. J.M. Hartings, X.Pu, J.L. Cheung, R.K. Chang, J. Opt. Soc. Am. B 14, 2842 (1997)

    Article  ADS  Google Scholar 

  16. E. Schäffer, T. Thurn-albrecht, T.P. Russel, U. Steiner, Nature 403, 874 (2000)

    Article  ADS  Google Scholar 

  17. R.Wunenburger, A.Casner, J.P. Delville, Phys. Rev. E 73, 036314 (2006)

    Article  ADS  Google Scholar 

  18. A. Hallanger, I. Brevik, S. Haaland, Phys. Rev. E 71, 056601 (2005)

    Article  ADS  Google Scholar 

  19. H. Chraibi, D. Lasseux, E. Arquis, R. Wunenburger, J.P. Delville, Eur. J. Mech. B/Fluids 27, 419 (2008)

    Article  MATH  ADS  Google Scholar 

  20. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

  21. R. Wunenburger, A. Casner, J.P. Delville, Phys. Rev. E 73, 036315 (2006)

    Article  ADS  Google Scholar 

  22. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, 1992)

  23. J. Tanzosh, M. Manga, H.A. Stone, Boundary Element Technol. VI, 19 (1992)

    MathSciNet  Google Scholar 

  24. M. Manga, H.A. Stone, J. Fluid Mech. 287, 279 (1994)

    Article  ADS  Google Scholar 

  25. D.M. Koch, D.L. Koch, J. Fluid Mech. 287, 251 (1994)

    Article  ADS  Google Scholar 

  26. S.H. Lee, L.G. Leal, J. Fluid Mech. 87, 81 (1982)

    Google Scholar 

  27. G. Graziani, Int. Engng Sci. 27, 855 (1989)

    Article  MATH  Google Scholar 

  28. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, (Academic Press, 1984)

  29. A.A. Bakr, The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems, Lect. Notes Engin. (Springer-Verlag, 1986)

  30. B. Jean-Jean, E. Freysz, A. Ducasse, B. Pouligny, Europhys. Lett. 7, 219 (1988)

    Article  ADS  Google Scholar 

  31. D. Beysens, A. Bourgou, P. Calmettes, Phys. Rev. A 26, 3589 (1982)

    Article  ADS  Google Scholar 

  32. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)

  33. G.V. Ostrovskaya, I.I. Komissarova, E.N. Shedova, Opt. Commun. 66, 15 (1987)

    Google Scholar 

  34. E. Brasselet, R.Wunenburger, J.-P. Delville, Phys. Rev. Lett. 101, 014501 (2008)

    Article  ADS  Google Scholar 

  35. A. Casner, J.P. Delville, I. Brevik, J. Opt. Soc. Am. B 20, 2355 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chraibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chraibi, H., Lasseux, D., Wunenburger, R. et al. Optohydrodynamics of soft fluid interfaces: Optical and viscous nonlinear effects. Eur. Phys. J. E 32, 43–52 (2010). https://doi.org/10.1140/epje/i2010-10605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10605-4

Keywords

Navigation