Skip to main content
Log in

Phoretic motion of spheroidal particles due to self-generated solute gradients

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, Angew. Chem., Int. Ed. 41, 652 (2002)

    Article  Google Scholar 

  2. W.E. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  3. J.M. Catchmark, S. Subramanian, A. Sen, Small 1, 1 (2005)

    Article  Google Scholar 

  4. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  5. A. Erbe, M. Zientara, L. Baraban, C. Kreidler, P. Leiderer, J. Phys.: Condens. Matter 20, 404215 (2008)

    Article  Google Scholar 

  6. L. Baraban, C. Kreidler, D. Makarov, P. Leiderer, A. Erbe, arXiv:0807.1619v1

  7. W.E. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 45, 5420 (2006)

    Article  Google Scholar 

  8. R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)

    Article  ADS  Google Scholar 

  9. N. Bala Saidulu, K.L. Sebastian, J. Chem. Phys. 128, 074708 (2008)

    Article  ADS  Google Scholar 

  10. W.E. Paxton, A. Sen, T.E. Mallouk, Chem. Eur. J. 11, 6462 (2005)

    Article  Google Scholar 

  11. G. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)

    Article  Google Scholar 

  12. R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  13. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  Google Scholar 

  14. M.N. Popescu, S. Dietrich, G. Oshanin, J. Chem. Phys. 130, 194702 (2009)

    Article  ADS  Google Scholar 

  15. F. Juelicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)

    Article  Google Scholar 

  16. As noticed in the Introduction, in doing so one is bound by a number of assumptions which are either already present in the classical theory of phoresis or arise as a result of the mapping of such “active” surface particles into the framework of a theory developed to describe the case of inert particles immersed in a pre-defined, externally controlled concentration gradient. These assumptions are discussed in detail in ref. Popescu_2009. For the purpose of the present work, we simply assume that such a mapping is possible and thus we subscribe to these assumptions.

  17. A.B. Pawar, I. Kretzschmar, Langmuir 24, 355 (2008)

    Article  Google Scholar 

  18. A.B. Pawar, I. Kretzschmar, Langmuir 25, 9057 (2009)

    Article  Google Scholar 

  19. T. Ohta, T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009)

    Article  ADS  Google Scholar 

  20. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff International, Leyden, 1973), chapts. 4-26, 4-27, 4-30, and 4-31

  21. A. Einstein, On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat, in Investigations on the theory of the Brownian motion, edited by R. Fürth, translated by A.D. Cowper (Dover, New York, 1956)

  22. A. Ajdari, L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006)

    Article  ADS  Google Scholar 

  23. Besides the translation described by $\mathbf{V}$, in the most general case a term accounting for a rigid-body rotation of the particle with angular velocity $\bm{\Omega}$ should also be considered. However, this angular velocity turns out to be identically zero in most cases in which the particle has homogeneous surface properties Anderson_1989,Morrison_1970. The azimuthal symmetry of our system and the additional assumption that the properties of the catalyst-covered surface are similar to those of the inert part (as far as the particle-solute effective interaction is concerned) ensures that we are dealing with such a case

  24. F.A. Morrison jr., J. Colloid Interface Sci. 34, 210 (1970)

    Article  Google Scholar 

  25. G.R. Willmott, Phys. Rev. E 79, 066309 (2009)

    Article  ADS  Google Scholar 

  26. G.R. Willmott, Phys. Rev. E 77, 055302(R) (2008)

    Article  ADS  Google Scholar 

  27. J.L. Anderson, J. Colloid Interface Sci. 105, 45 (1985)

    Article  Google Scholar 

  28. M.C. Fair, J.L. Anderson, J. Colloid Interface Sci. 127, 388 (1989)

    Article  Google Scholar 

  29. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff International, Leyden, 1973), chapt.3-5, pp. 85-87

  30. R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009)

    Article  ADS  Google Scholar 

  31. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965), p. 752

  32. H.F. Bauer, J. Thermal Anal. 35, 1571 (1989)

    Article  ADS  Google Scholar 

  33. W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968), chapts. 5.21–5.28

  34. E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea, New York, 1965), chapt. II

  35. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965), p. 332

  36. R.E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960), pp. 553–570

  37. F. Pomer, J. Navasquillo, J. Electrostatics 22, 309 (1989)

    Article  Google Scholar 

  38. The numerical calculations have been performed using the software Mathematica (version 7.01), for which the Legendre function $Q_{\ell}(x)$ for arguments $x > 1$ or $x \in \mathbb{C} \setminus \mathbb{R}$ is implemented as “the Legendre function Q of type 3” LegendreQ$[\ell,0,x,3]$

  39. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965), p. 774

  40. H. Brenner, Chem. Eng. Sci. 19, 703 (1964)

    Article  Google Scholar 

  41. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965), p. 557

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Popescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, M.N., Dietrich, S., Tasinkevych, M. et al. Phoretic motion of spheroidal particles due to self-generated solute gradients. Eur. Phys. J. E 31, 351–367 (2010). https://doi.org/10.1140/epje/i2010-10593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10593-3

Keywords

Navigation