Skip to main content
Log in

Statics and dynamics of adhesion between two soap bubbles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

An original set-up is used to study the adhesive properties of two hemispherical soap bubbles put into contact. The contact angle at the line connecting the three films is extracted by image analysis of the bubbles profiles. After the initial contact, the angle rapidly reaches a static value slightly larger than the standard 120° angle expected from Plateau rule. This deviation is consistent with previous experimental and theoretical studies: it can be quantitatively predicted by taking into account the finite size of the Plateau border (the liquid volume trapped at the vertex) in the free energy minimization. The visco-elastic adhesion properties of the bubbles are further explored by measuring the deviation Δθd(t) of the contact angle from the static value as the distance between the two bubbles supports is sinusoidally modulated. It is found to linearly increase with Δr c/r c , where rc is the radius of the central film and Δr c the amplitude of modulation of this length induced by the displacement of the supports. The in-phase and out-of-phase components of Δθd(t) with the imposed modulation frequency are systematically probed, which reveals a transition from a viscous to an elastic response of the system with a crossover pulsation of the order 1rad · s^-1. Independent interfacial rheological measurements, obtained from an oscillating bubble experiment, allow us to develop a model of dynamic adhesion which is confronted to our experimental results. The relevance of such adhesive dynamic properties to the rheology of foams is briefly discussed using a perturbative approach to the Princen 2D model of foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Khan, C.A. Schnepper, R.C. Armstrong, J. Rheol. 32, 69 (1988).

    Article  Google Scholar 

  2. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, New York, 1999).

  3. R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005).

  4. D. Buzza, C.Y. Lu, M. Cates, J. Phys. II 5, 37 (1995).

    Article  ADS  Google Scholar 

  5. L. Schwartz, H. Princen, J. Colloid Interface Sci. 118, 201 (1987).

    Article  Google Scholar 

  6. J. Lucassen, M. Van den Tempel, J. Colloid Interface Sci. 41, 491 (1972).

    Article  Google Scholar 

  7. J. Lucassen, M. Van den Tempel, Chem. Eng. Sci. 27, 1283 (1972).

    Article  Google Scholar 

  8. V. Bergeron, J. Phys.: Condens. Matter 11, R215 (1999).

  9. H. Fruhner, K.D. Wantke, Colloids Surf. A: Physicochem. Eng. Aspects 114, 53 (1996).

    Article  Google Scholar 

  10. H. Fruhner, K.D. Wantke, K. Lunkenheimer, Colloids Surf. A: Physicochem. Eng. Aspects 162, 193 (1999).

    Article  Google Scholar 

  11. K.D. Wantke, H. Fruhner, J. Colloid Interface Sci. 237, 185 (2001).

    Article  Google Scholar 

  12. P. Aussillous, D. Quéré, Europhys. Lett. 59, 370 (2002).

    Article  ADS  Google Scholar 

  13. I. Cantat, R. Delannay, Phys. Rev. E 67, 031501 (2003).

    Article  ADS  Google Scholar 

  14. N. Denkov, V. Subramanian, D. Gurovich, A. Lips, Colloids Surf. A: Physicochem. Eng. Aspects 263, 129 (2005).

    Article  Google Scholar 

  15. E. Terriac, J. Etrillard, I. Cantat, Europhys. Lett. 74, 909 (2006).

    Article  ADS  Google Scholar 

  16. M. Durand, H.A. Stone, Phys. Rev. Lett. 97, 226101 (2006).

    Article  ADS  Google Scholar 

  17. H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983).

    Article  Google Scholar 

  18. J. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Clemm, Paris, 1873).

  19. M. Fortes, M. Rosa, J. Colloid Interface Sci. 241, 205 (2001).

    Article  Google Scholar 

  20. J. Rodriguez, B. Saramago, M. Fortes, J. Colloid Interface Sci. 239, 577 (2001).

    Article  Google Scholar 

  21. J.C. Géminard, A. Zywocinski, F. Caillier, P. Oswald, Philos. Mag. Lett. 84, 199 (2004).

    Article  ADS  Google Scholar 

  22. M. Fortes, P. Teixeira, Philos. Mag. Lett. 85, 21 (2005).

    Article  ADS  Google Scholar 

  23. M. Fortes, P. Teixeira, Phys. Rev. E 71, 051404 (2005).

    Article  ADS  Google Scholar 

  24. A. Neimark, M. Vignes-Adler, Phys. Rev. E 51, 788 (1995).

    Article  ADS  Google Scholar 

  25. G. Han, A. Dussaud, B. Prunet-Foch, A. Neimark, M. Vignes-Adler, J. Non-Equilib. Thermodyn. 25, 325 (2000).

    Article  MATH  Google Scholar 

  26. K. Brakke, Exp. Math. 1, 141 (1992).

    MATH  MathSciNet  Google Scholar 

  27. S. Cohen-Addad, R. Höhler, Y. Khidas, Phys. Rev. Lett. 93, 028302 (2004).

    Article  ADS  Google Scholar 

  28. D. Langevin, Adv. Colloid Interface Sci. 88, 209 (2000).

    Article  Google Scholar 

  29. J. Lucassen, Faraday Discuss. Chem. Soc. 59, 76 (1975).

    Article  Google Scholar 

  30. D. Edwards, H. Brenner, D. Wasan, Interfacial Transport Processes and Rheology (Butterworth-Heinemann, 1991).

  31. D. Stamenovic, J. Colloid Interface Sci. 145, 255 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Besson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, S., Debrégeas, G. Statics and dynamics of adhesion between two soap bubbles. Eur. Phys. J. E 24, 109–117 (2007). https://doi.org/10.1140/epje/i2007-10219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10219-y

PACS.

Navigation