Skip to main content
Log in

Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A cholesteric liquid crystal can be considered as a one-dimensional photonic crystal with a refractive index that is regularly modulated along the helix axis because of the particular arrangement of the molecules. The result is that the propagation of light is suppressed for a particular range of wavelengths (bandgap). A polymer-stabilized cholesteric liquid crystal (PSCLC), which is obtained by in situ photopolymerization of reactive liquid-crystal molecules in the presence of non-reactive liquid-crystal molecules in an oriented Bragg planar texture, is elaborated by combining the UV-curing with a thermally induced pitch variation. As a consequence, it is shown here that memory effects are introduced into the characteristics of the reflection band of the material at room temperature. In the visible spectrum, the reflection bandwidth can be tuned in agreement with the thermal ramp and broadened. In addition, the bandgap filters can be switched between broadband reflective, scattering and transparent states by subjecting them to an electric field. Related application fields of these functional materials are switchable smart windows for the control of the solar-light spectrum and white-or-black polarizer-free reflective displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer Verlag, Berlin, 2001).

  3. D. Dunmur, K. Toriyama, in Physical Properties of Liquid Crystals, edited by D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill (Wiley-VCH, Weinheim, 1999) pp. 124-128.

  4. For a review, I. Dierking, Adv. Mater. 12, 167 (2000).

    Article  Google Scholar 

  5. a) D.-K. Yang, L.-C. Chien, Y.K. Fung

  6. U. Behrens, H.-S. Kitzerow, Pol. Adv. Tech. 5, 433 (1994).

    Article  Google Scholar 

  7. S. Zumer, G.P. Crawford, in Liquid Crystals in Complex Geometries, edited by G.P. Crawford, S. Zumer (Taylor and Francis, London, 1996) Chapt. 4.

  8. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Mater. 1, 64 (2002).

    Article  Google Scholar 

  9. F.-H. Kreuzer, D. Andrejewski, W. Haas, N. Häberle, G. Riepl, P. Spes, Mol. Cryst. Liq. Cryst. 199, 345 (1991).

    Google Scholar 

  10. E. Nouvet, M. Mitov, Mol. Cryst. Liq. Cryst. 413, 515 (2004).

    Article  Google Scholar 

  11. a) R. Cano, Bull. Soc. Fr. Mineral. Crystallogr. 90, 333 (1967)

    Google Scholar 

  12. M. Mitov, A. Boudet, P. Sopéna, P. Sixou, Liq. Cryst. 23, 903 (1997).

    Article  Google Scholar 

  13. C.V. Rajaram, S.D. Hudson, L.-C. Chien, Chem. Mater. 7, 2300 (1995).

    Google Scholar 

  14. F. Du, S.-T. Wu, Appl. Phys. Lett. 83, 1310 (2003).

    Article  Google Scholar 

  15. C.V. Rajaram, S.D. Hudson, L.-C. Chien, Chem. Mater. 8, 2451 (1996).

    Article  Google Scholar 

  16. D.-K. Yang, L.-C. Chien, J.W. Doane, Appl. Phys. Lett. 60, 3102 (1992).

    Article  Google Scholar 

  17. H. Kelker, R. Hatz, Handbook of Liquid Crystals (Verlag Chemie, Weinheim, 1980) pp. 330-332.

  18. R.A.M. Hikmet, H. Kemperman, Liq. Cryst. 26, 1645 (1999).

    Article  Google Scholar 

  19. D.J. Broer, J. Lub, G.N. Mol, Nature 378, 467 (1995).

    Article  Google Scholar 

  20. A. Lavernhe, M. Mitov, C. Binet, C. Bourgerette, Liq. Cryst. 28, 803 (2001).

    Article  Google Scholar 

  21. M. Mitov, A. Boudet, P. Sopéna, Eur. Phys. J. B 8, 327 (1999).

    Google Scholar 

  22. A. Boudet, C. Binet, M. Mitov, C. Bourgerette, E. Boucher, Eur. Phys. J. E 2, 247 (2000).

    Google Scholar 

  23. M. Mitov, C. Binet, A. Boudet, C. Bourgerette, Mol. Cryst. Liq. Cryst. 358, 209 (2001).

    Google Scholar 

  24. M. Mitov, C. Binet, C. Bourgerette, in Liquid Crystals V, edited by I.-C. Khoo, Proc. SPIE 4463, 11 (2001).

    Article  Google Scholar 

  25. R.A.M. Hikmet, Mol. Cryst. Liq. Cryst. 198, 357 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mitov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitov, M., Nouvet, E. & Dessaud, N. Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps. Eur. Phys. J. E 15, 413–419 (2004). https://doi.org/10.1140/epje/i2004-10058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10058-4

PACS.

Navigation