Skip to main content
Log in

Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have investigated tunneling characteristics of Bose-Einstein condensates (BECs) in a triple-well potential coupled to a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from the oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, T. Esslinger, Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  2. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)

    Article  ADS  Google Scholar 

  3. M. Cola, M. Paris, N. Piovella, Phys. Rev. A 70, 043809 (2004)

    Article  ADS  Google Scholar 

  4. S. Slama, S. Bux, G. Krenz, C. Zimmermann, P.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)

    Article  ADS  Google Scholar 

  5. A. Vukics, C. Maschler, H. Ritsch, New J. Phys. 9, 255 (2007)

    Article  ADS  Google Scholar 

  6. C. Maschler, I.B. Mekhov, H. Ritsch, Eur. Phys. J. D 46, 545 (2008)

    Article  ADS  Google Scholar 

  7. J.M. Zhang, W.M. Liu, D.L. Zhou, Phys. Rev. A 77, 033620 (2008)

    Article  ADS  Google Scholar 

  8. J. Larson, B. Damski, G. Morigi, M. Lewenstein, Phys. Rev. Lett. 100, 050401 (2008)

    Article  ADS  Google Scholar 

  9. G. Szirmai, D. Nagy, P. Domokos, Phys. Rev. Lett. 102, 080401 (2009)

    Article  ADS  Google Scholar 

  10. U. Shrestha, J. Ruostekoski, New J. Phys. 14, 043037 (2012)

    Article  ADS  Google Scholar 

  11. K.W. Murch, K.L. Moore, S. Gupta, D.M. Stamper-Kurn, Nat. Phys. 4, 561 (2008)

    Article  Google Scholar 

  12. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  13. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  14. L. Zhou, H. Pu, H.Y. Ling, W.P. Zhang, Phys. Rev. Lett. 103, 160403 (2009)

    Article  ADS  Google Scholar 

  15. L. Zhou, H. Pu, H.Y. Ling, K. Zhang, W.P. Zhang, Phys. Rev. A 81, 063641 (2010)

    Article  ADS  Google Scholar 

  16. J. Larson, M. Lewenstein, New J. Phys. 11, 063027 (2009)

    Article  ADS  Google Scholar 

  17. Y. Dong, J.W. Ye, H. Pu, Phys. Rev. A 83, 031608 (2011)

    Article  ADS  Google Scholar 

  18. S. Gupta, K.L. Moore, K.W. Murch, D.M. Stamper-Kurn, Phys. Rev. Lett. 99, 213601 (2007)

    Article  ADS  Google Scholar 

  19. S. Ritter, F. Brennecke, K. Baumann, T. Donner, C. Guerlin, T. Esslinger, Appl. Phys. B 95, 213 (2009)

    Article  ADS  Google Scholar 

  20. G. Szirmai, D. Nagy, P. Domokos, Phys. Rev. A 81, 043639 (2010)

    Article  ADS  Google Scholar 

  21. S. Yang, M. Al-Amri, J. Evers, M.S. Zubairy, Phys. Rev. A 83, 053821 (2011)

    Article  ADS  Google Scholar 

  22. B.P. Venkatesh, J. Larson, D.H.J. O’Dell, Phys. Rev. A 83, 063606 (2011)

    Article  ADS  Google Scholar 

  23. L. Zhou, H. Pu, K. Zhang, X.D. Zhao, W.P. Zhang, Phys. Rev. A 84, 043606 (2011)

    Article  ADS  Google Scholar 

  24. J. Keeling, M.J. Bhaseen, B.D. Simons, Phys. Rev. Lett. 105, 043001 (2010)

    Article  ADS  Google Scholar 

  25. D. Nagy, G. Kónya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010)

    Article  ADS  Google Scholar 

  26. N. Liu, J.L. Lian, J. Ma, L.T. Xiao, G. Chen, J.Q. Liang, S.T. Jia, Phys. Rev. A 83, 033601 (2011)

    Article  ADS  Google Scholar 

  27. J.M. Zhang, W.M. Liu, D.L. Zhou, Phys. Rev. A 78, 043618 (2008)

    Article  ADS  Google Scholar 

  28. J. Larson, J. Martikainen, Phys. Rev. A 82, 033606 (2010)

    Article  ADS  Google Scholar 

  29. G. Szirmai, G. Mazzarella, L. Salasnich, Phys. Rev. A 91, 023601 (2015)

    Article  ADS  Google Scholar 

  30. W. Chen, P. Meystre, Phys. Rev. A 79, 043801 (2009)

    Article  ADS  Google Scholar 

  31. P. Hamel, S. Haddadi, F. Raineri, P. Monnier, G. Beaudoin, I. Sagnes, A. Levenson, A.M. Yacomotti, Nat. Photon. 9, 311 (2015)

    Article  ADS  Google Scholar 

  32. S. Mossmann, C. Jung, Phys. Rev. A 74, 033601 (2006)

    Article  ADS  Google Scholar 

  33. T. Lahaye, T. Pfau, L. Santos, Phys. Rev. Lett. 104, 170404 (2010)

    Article  ADS  Google Scholar 

  34. B. Liu, L.B. Fu, S.P. Yang, J. Liu, Phys. Rev. A 75, 033601 (2007)

    Article  ADS  Google Scholar 

  35. L. Cao, I. Brouzos, S. Zölner, P. Schmelcher, New J. Phys. 13, 033032 (2011)

    Article  ADS  Google Scholar 

  36. E.M. Graefe, H.J. Korsch, D. Witthaut, Phys. Rev. A 73, 013617 (2006)

    Article  ADS  Google Scholar 

  37. G.B. Lu, W.H. Hai, Q.T. Xie, Phys. Rev. A 83, 013407 (2011)

    Article  ADS  Google Scholar 

  38. A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 83, 043604 (2011)

    Article  ADS  Google Scholar 

  39. J.A. Stickney, D.Z. Anderson, A.A. Zozulya, Phys. Rev. A 75, 013608 (2007)

    Article  ADS  Google Scholar 

  40. A. Benseny, S. Fernández-Vidal, J. Bagudà, R. Corbalán, A. Picón, L. Roso, G. Birkl, J. Mompart, Phys. Rev. A 82, 013604 (2010)

    Article  ADS  Google Scholar 

  41. B. Wang, Y. Chen, Chin. Phys. Lett. 75, 024211 (2013)

    Article  ADS  Google Scholar 

  42. S. Haroche, M. Brune, J.M. Raimond, Europhys. Lett. 14, 19 (1991)

    Article  ADS  Google Scholar 

  43. S.K. Adhikari, J. Phys. B 44, 075301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, H., Chen, Y. et al. Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system. Eur. Phys. J. D 71, 56 (2017). https://doi.org/10.1140/epjd/e2017-70647-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70647-3

Keywords

Navigation