Skip to main content

Advertisement

Log in

Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose an arbitrary driven spin as the working fluid of a quantum Otto cycle in the presence of internal friction. The role of total allocated time to the adiabatic branches of the cycle, generated by different control field profiles, on the extractable work and the thermal efficiency are analyzed in detail. The internal friction is characterized by the excess entropy production and quantitatively determined by studying the closeness of an actual unitary process to an infinitely long one via quantum relative entropy. It is found that the non-ideal, finite-time adiabatic transformations negatively effect the work output and the thermal efficiency of the quantum heat engine. The non-monotone dependence of the work output, thermal efficiency, entropy production and the internal friction on the total adiabatic time are elucidated. It is also found that almost frictionless adiabatic transformations with small entropy production can be obtained in a short adiabatic time. Complete frictionless solutions for finite adiabatic times, possible implementation of our engine in NMR setups and the estimation of the power output have also been analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E.D. Scovil, E.O. Schulz-Dubois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  2. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  Google Scholar 

  4. G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  5. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Phys. Rev. E 90, 032102 (2014)

    Article  ADS  Google Scholar 

  6. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  7. M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  8. T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  9. H.T. Quan, Y.-X Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. H.T. Quan, Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Tonner, G. Mahler, Phys. Rev. E 72, 066118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Turkpence, Ö.E. Müstecaplıoğlu, Phys. Rev. E 93, 012145 (2016)

    Article  ADS  Google Scholar 

  13. R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  14. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  15. A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Sci. Rep. 5, 12953 (2015)

    Article  ADS  Google Scholar 

  16. B. Gardas, S. Deffner, Phys. Rev. E 92, 042126 (2015)

    Article  ADS  Google Scholar 

  17. J. Robnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  18. O. Abah, J. Robnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  19. O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012)

    Article  ADS  Google Scholar 

  20. K. Zhang, F. Bariani, P. Meystre, Phys. Rev. Lett. 112, 150602 (2014)

    Article  ADS  Google Scholar 

  21. B. Sothmann, M. Büttiker, Europhys. Lett. 99, 27001 (2012)

    Article  ADS  Google Scholar 

  22. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  23. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Phys. Rev. A 91, 023816 (2015)

    Article  ADS  Google Scholar 

  24. E. Geva, R. Kosloff, J. Chem. Phys. 97, 4398 (1992)

    Article  ADS  Google Scholar 

  25. Y. Rezek, Entropy 12, 1885 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Kosloff, Entropy 15, 2100 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Rezek, P. Salamon, K.H. Hoffmann, R. Kosloff, Europhys. Lett. 85, 30008 (2009)

    Article  ADS  Google Scholar 

  28. G. Thomas, R.S. Johal, Eur. Phys. J. B 87, 166 (2014)

    Article  ADS  Google Scholar 

  29. M. Campisi, J. Pekola, R. Fazio, New J. Phys. 17, 035012 (2015)

    Article  ADS  Google Scholar 

  30. A. Alecce, F. Galve, N.L. Gullo, L. Dell’Anna, F. Plastina, R. Zambrini, New J. Phys. 17, 075007 (2015)

    Article  ADS  Google Scholar 

  31. Y. Rezek, R. Kosloff, New J. Phys. 8, 83 (2006)

    Article  ADS  Google Scholar 

  32. J. Wang, J. He, Y. Xin, Phys. Scr. 75, 227 (2007)

    Article  ADS  Google Scholar 

  33. T. Feldmann, R. Kosloff, Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  34. R. Kosloff, T. Feldmann, Phys. Rev. E 65, 055102(R) (2002)

    Article  ADS  Google Scholar 

  35. T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  36. T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  37. A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Feldmann, R. Kosloff, Phys. Rev. E 73, 025107(R) (2006)

    Article  ADS  Google Scholar 

  39. R. Kosloff, T. Feldmann, Phys. Rev. E 82, 011134 (2010)

    Article  ADS  Google Scholar 

  40. J. Wang, J. He, Z. Wu, Phys. Rev. E 85, 031145 (2012)

    Article  ADS  Google Scholar 

  41. T. Feldmann, R. Kosloff, Phys. Rev. E 85, 051114 (2012)

    Article  ADS  Google Scholar 

  42. R. Wang, J. Wang, J. He, Y. Ma, Phys. Rev. E 87, 042119 (2013)

    Article  ADS  Google Scholar 

  43. E. Torrontegui, R. Kosloff, Phys. Rev. E 88, 032103 (2013)

    Article  ADS  Google Scholar 

  44. K.-H. Ahn, P. Mohanty, Phys. Rev. Lett. 90, 085504 (2003)

    Article  ADS  Google Scholar 

  45. S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010)

    Article  ADS  Google Scholar 

  46. F. Wu, L. Chen, F. Sun, C. Wu, Q. Li, Phys. Rev. E 73, 016103 (2006)

    Article  ADS  Google Scholar 

  47. F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N.L. Gullo, R. Zambrini, Phys. Rev. Lett. 113, 260601 (2014)

    Article  ADS  Google Scholar 

  48. A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014)

    Article  Google Scholar 

  49. Y. Zheng, S. Campbell, G.D. Chiara, D. Poletti, arXiv:1509.01882

  50. Y. Zheng, P. Hanggi, D. Poletti, arXiv:1604.00489

  51. W.L. Ribeiro, G.T. Landi, F.L. Semiao, arXiv:1601.01833

  52. A. Misra, U. Singh, M.N. Bera, A.K. Rajagopal, Phys. Rev. E 92, 042161 (2015)

    Article  ADS  Google Scholar 

  53. T.B. Batalhao, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G.D. Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014)

    Article  ADS  Google Scholar 

  54. C. Raitz, A.M. Souza, R. Auccaise, R.S. Sarthour, I.S. Oliveira, Quantum Inf. Process. 14, 37 (2015)

    Article  ADS  Google Scholar 

  55. S. Cakmak, F. Altintas, O.E. Mustecaplioglu, Phys. Scr. 91, 075101 (2016)

    Article  ADS  Google Scholar 

  56. T.V. Acconcia, M.V.S. Bonanca, S. Deffner, Phys. Rev. E 92, 042148 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. T.V. Acconcia, M.V.S. Bonanca, Phys. Rev. E 91, 042141 (2015)

    Article  ADS  Google Scholar 

  58. I.S. Oliveira, T.J. Bonagamba, R.S. Sarthour, J.C.C. Freitas, E.R. deAzevedo, NMR Quantum Information Processing (Elsevier, 2007)

  59. J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to Experiment (Wiley, 2008)

  60. R. Landauer, IBM J. Res. Develop. 5, 183 (1961)

    Article  MathSciNet  Google Scholar 

  61. A. Redfield, IBM J. Res. Develop. 1, 19 (1957)

    Article  Google Scholar 

  62. A. Purkayastha, A. Dhar, Phys. Rev. A 93, 062114 (2016)

    Article  ADS  Google Scholar 

  63. P. Zhao, H. De Raedt, S. Miyashita, F. Jin, K. Michielsen, Phys. Rev. E 94, 022126 (2016)

    Article  ADS  Google Scholar 

  64. P.L. Kuhns, P.C. Hammel, O. Gonen, J.S. Waugh, Phys. Rev. B 35, 4591 (1987)

    Article  ADS  Google Scholar 

  65. G. Diakova, J.-P. Korb, R.G. Bryant, Magn. Reson. Med. 68, 272 (2012)

    Article  Google Scholar 

  66. R. Schmied, Introduction to Computational Quantum Mechanics (Lecture notes, 2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Çakmak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, S., Altintas, F., Gençten, A. et al. Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71, 75 (2017). https://doi.org/10.1140/epjd/e2017-70443-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70443-1

Keywords

Navigation