Skip to main content

Advertisement

Log in

Electron scattering by biomass molecular fragments: useful data for plasma applications?

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Recent data obtained for electron scattering by biomass molecular fragments, indicated that low-energy resonances may have an important role in the de-lignification of biomass through a plasma pre-treatment. To support these findings, we present new experimental evidence of the predicted dissociation pathways on plasma treatment of biomass. An important question is how accurate must the experimental and/or the theoretical data be in order to indicate that plasma modelings can be really useful in understanding plasma applications? In this paper, we initiate a discussion on the role of data accuracy of experimental and theoretical electron-molecule scattering cross sections in plasma modeling. First we review technological motivations for carrying out electron-molecule scattering studies. Then we point out the theoretical and experimental limitations that prevent us from obtaining more accurate cross sections. We present a few examples involving biomass molecular fragments, to illustrate theoretical inaccuracies on: resonances positions and widths, electronic excitation, superelastic cross sections from metastable states and due to multichannel effects on the momentum transfer cross sections. On the experimental side we briefly describe challenges in making absolute cross sections measurements with biomass species and radicals. And finally, through a simulation of a N2 plasma, we illustrate the impact on the simulation due to inaccuracies on the resonance positions and widths and due to multichannel effects on the momentum transfer cross sections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.V. Johnson, C.P. Malone, M.A. Khakoo, J.W. McConkey, I. Kanik, J. Phys.: Conf. Ser. 88, 012069 (2007)

    ADS  Google Scholar 

  2. L. Campbell, M.J. Brunger, Plasma Sources Sci. Technol. 22, 013002 (2013)

    Article  ADS  Google Scholar 

  3. W.M. Huo, V. McKoy, M.A.P. Lima, T.L. Gibson, in Thermophysical Aspects of Reentry Flow, edited by J. Moss, C. Scott (AIAA, New York, 1986), Vol. 103, pp. 152–196

  4. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 1994)

  5. W.N.G. Hitchon, Plasma Processes for Semiconductor Fabrication (Cambridge, 1999)

  6. L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999)

    Article  ADS  Google Scholar 

  7. A. Garscadden, Z. Phys. D 24, 99 (1992)

    Article  ADS  Google Scholar 

  8. J.-S. Yoon, M.-Y. Song, H. Kato, M. Hoshino, H. Tanaka, M.J. Brunger, S.J. Buckman, H. Cho, J. Phys. Chem. Ref. Data 39, 033106 (2010)

    Article  ADS  Google Scholar 

  9. W.F. van Dorp, Phys. Chem. Chem. Phys. 14, 16753 (2012)

    Article  Google Scholar 

  10. W.F. van Dorp, X. Zhang, B.L. Feringa, T.W. Hansen, J.B. Wagner, J. Th. M. de Hosson, ACS Nano 6, 10076 (2012)

    Article  Google Scholar 

  11. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    Article  ADS  Google Scholar 

  12. D.B. Graves, J. Phys. D 45, 263001 (2009)

    Article  ADS  Google Scholar 

  13. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  14. T. von Woedtke, S. Reuter, K. Masur, K.D. Wektmann, Phys. Rep. 530, 291 (2013)

    Article  ADS  Google Scholar 

  15. J. Kopyra, H. Abdoul-Carime, F. Kossoski, M.T. do N. Varella, Phys. Chem. Chem. Phys. 16, 25054 (2014)

    Article  Google Scholar 

  16. F. Kossoski, J. Kopyra, M.T. do N. Varella, Phys. Chem. Chem. Phys. 17, 28958 (2015)

    Article  Google Scholar 

  17. E.M. de Oliveira, S. d’A. Sanchez, M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, M.T. do N. Varella, Phys. Rev. A 86, 020701 (2012)

    Article  Google Scholar 

  18. E.M. de Oliveira, R.F. da Costa, S. d’A. Sanchez, A.P.P. Natalense, M.H.F. Bettega, M.A.P. Lima, M.T. do N. Varella, Phys. Chem. Chem. Phys. 15, 1682 (2013)

    Article  Google Scholar 

  19. J. Amorim, C. Oliveira, J.A. Souza-Corrêa, M.A. Ridenti, Plasma Process. Polym. 10, 670 (2013)

    Article  Google Scholar 

  20. J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Mǎsín, M. Plummer, J. Tennyson, H.N. Varambhia, Eur. Phys. J. D 66, 58 (2012)

    Article  ADS  Google Scholar 

  21. T.N. Rescigno, A.E. Orel, Phys. Rev. A 88, 012703 (2013)

    Article  ADS  Google Scholar 

  22. R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)

    Article  ADS  Google Scholar 

  23. S.J. Buckman, M.J. Brunger, K. Ratnavelu, Fusion Sci. Technol. 63, 385 (2013)

    Google Scholar 

  24. J.R. Brunton, L.R. Hargreaves, T.M. Maddern, S.J. Buckman, G. García, F. Blanco, O. Zatsarinny, K. Bartschat, D.B. Jones, G.B. da Silva, M.J. Brunger, J. Phys. B 46, 245203 (2013)

    Article  ADS  Google Scholar 

  25. M.J. Brunger, S.J. Buckman, Phys. Rep. 357, 215 (2002)

    Article  ADS  Google Scholar 

  26. M. Moisan, C. Beaudry, P. Leprince, IEEE Trans. Plasma Sci. 3, 55 (1975)

    Article  ADS  Google Scholar 

  27. M.A. Ridenti, J.A. Souza-Corrêa, J. Amorim, J. Phys. D 47, 045204 (2014)

    Article  ADS  Google Scholar 

  28. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  29. R.F. da Costa, M.H.F. Bettega, M.A.P. Lima, Phys. Rev. A 77, 012717 (2008)

    Article  ADS  Google Scholar 

  30. M.H.F. Bettega, M.A.P. Lima, J. Chem. Phys. 126, 194317 (2007)

    Article  ADS  Google Scholar 

  31. T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 62710 (2009)

    Article  ADS  Google Scholar 

  32. T.C. Freitas, K. Coutinho, M.T. do N. Varella, M.A.P. Lima, S. Canuto, M.H.F. Bettega, J. Chem. Phys. 138, 174307 (2013)

    Article  ADS  Google Scholar 

  33. E.M. de Oliveira, T.C. Freitas, K. Coutinho, M.T. do N. Varella, S. Canuto, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 141, 051105 (2014)

    Article  ADS  Google Scholar 

  34. C.S. Sartori, F.J. da Paixão, M.A.P. Lima, Phys. Rev. A 55, 3243 (1997)

    Article  ADS  Google Scholar 

  35. C.S. Sartori, F.J. da Paixão, M.A.P. Lima, Phys. Rev. A 58, 2857 (1998)

    Article  ADS  Google Scholar 

  36. J. Amorim, J.L. da S. Lino, J. Loureiro, M.A.P. Lima, F.J. da Paixão, Chem. Phys. 246, 275 (1999)

    Article  ADS  Google Scholar 

  37. T.M. Maddern, L.R. Hargreaves, M. Bolorizadeh, M.J. Brunger, S.J. Buckman, Meas. Sci. Technol. 19, 085801 (2008)

    Article  ADS  Google Scholar 

  38. T.M. Maddern, L.R. Hargreaves, J.R. Francis-Staite, M.J. Brunger, S.J. Buckman, C. Winstead, V. McKoy, Phys. Rev. Lett. 100, 063202 (2008)

    Article  ADS  Google Scholar 

  39. R.F. da Costa, M.H.F. Bettega, M.T. do N. Varella, E.M. de Oliveira, M.A.P. Lima, Phys. Rev. A 90, 052701 (2014)

    Article  ADS  Google Scholar 

  40. R.F. da Costa, E.M. de Oliveira, M.H.F. Bettega, M.T. do N. Varella, D.B. Jones, M.J. Brunger, F. Blanco, R. Colmenares, P. Limão-Vieira, G. García, M.A.P. Lima, J. Chem. Phys. 142, 104304 (2015)

    Article  ADS  Google Scholar 

  41. R.F.C. Neves, D.B. Jones, M.C.A. Lopes, K.L. Nixon, G.B. da Silva, H.V. Duque, E.M. de Oliveira, R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, K. Ratnavelu, G. García, M.J. Brunger, J. Chem. Phys. 142, 104305 (2015)

    Article  ADS  Google Scholar 

  42. D.B. Jones, R.F.C. Neves, M.C.A. Lopes, R.F. da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, G. García, P. Limão-Vieira, M.J. Brunger, J. Chem. Phys. 144, 124309 (2016)

    Article  ADS  Google Scholar 

  43. R.F. daCosta, M.T. do N. Varella, M.H.F. Bettega, R.F.C. Neves, M.C.A. Lopes, F. Blanco, G. García, D.B. Jones, M.J. Brunger, M.A.P. Lima, J. Chem. Phys. 144, 124310 (2016)

    Article  ADS  Google Scholar 

  44. P. Palihawadana, J.P. Sullivan, S.J. Buckman, Z. Masín, J.D. Gorfinkiel, F. Blanco, G. García, M.J. Brunger, J. Chem. Phys. 139, 014308 (2013)

    Article  ADS  Google Scholar 

  45. S. Longo, M. Capitelli, Plasma Chem. Plasma Process 14, 1 (1994)

    Article  Google Scholar 

  46. P. Fonte, A. Mangiarotti, S. Botelho, J.A.C. Gonçalves, M.A. Ridenti, C.C. Bueno, Nucl. Instrum. Methods A 613, 40 (2010)

    Article  ADS  Google Scholar 

  47. D.A. Dahl, A T.H. Teich, C.M. Franck, J. Phys. D 45, 4485201 (2012)

    Article  Google Scholar 

  48. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1997)

  49. J.H. Parker Jr., J.J. Lowke, Phys. Rev. 181, 290 (1969)

    Article  ADS  Google Scholar 

  50. Z. LjPetrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Rađenović, J. Phys. D 42, 194002 (2009)

    Article  ADS  Google Scholar 

  51. H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables 22, 179 (1978)

    Article  ADS  Google Scholar 

  52. K. Koura, Phys. Fluids 29, 3509 (1986)

    Article  ADS  Google Scholar 

  53. G.W. Fraser, E. Mathieson, Nucl. Instrum. Methods A 247, 544 (1985)

    Article  ADS  Google Scholar 

  54. S.F. Biagi, Nucl. Instrum. Methods A 421, 234 (1999)

    Article  ADS  Google Scholar 

  55. Y. Sakai, H. Tagashira, S. Sakamoto, J. Phys. D 10, 1035 (1976)

    Article  ADS  Google Scholar 

  56. S. Longo, M. Capitelli, Plasma Chem. Plasma Process 14, 1 (1994)

    Article  Google Scholar 

  57. J.B. Fisk, Phys. Rev. 49, 167 (1936)

    Article  ADS  Google Scholar 

  58. H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comput. Phys. 14, 620 (1998)

    Article  ADS  Google Scholar 

  59. H. Hasegawa, H. Date, M. Shimozuma, K. Yoshida, H. Tagashira, J. Phys. D 29, 2664 (1998)

    Article  ADS  Google Scholar 

  60. J.L. Hernández-Ávila, E. Basurto, J. de Urquijo, J. Phys. D 14, 3088 (2004)

    Article  ADS  Google Scholar 

  61. C.A. Barth, Plan. Space Sci. 40, 315 (1992)

    Article  ADS  Google Scholar 

  62. L. Campbell, M.J. Brunger, Geophys. Res. Lett. 34, L22102 (2007)

    Article  ADS  Google Scholar 

  63. L. Campbell, D.C. Cartwright, M.J. Brunger, J. Geophys. Res. 112, A08303 (2007)

    ADS  Google Scholar 

  64. L. Campbell, M.J. Brunger, Z.Lj. Petrovic, M. Jelisavcic, R. Panajotovic, S.J. Buckman, Geophys. Res. Lett. 31, L10103 (2004)

    Article  ADS  Google Scholar 

  65. L. Campbell, M.J. Brunger, M. Allan, J. Phys.: Conf. Ser. 115, 012003 (2008)

    ADS  Google Scholar 

  66. B. Mojarrabi, R.J. Gulley, A.G. Middleton, D.C. Cartwright, P.J.O. Teubner, S.J. Buckman, M.J. Brunger, J. Phys. B 28, 487 (1995)

    Article  ADS  Google Scholar 

  67. L. Josić, T. Wróblewski, Z. Lj. Petrović, J. Mechlińska-Drewko, G.P. Karwasz, Chem. Phys. Lett. 350, 318 (2001)

    Article  ADS  Google Scholar 

  68. M. Jelisavcic, R. Panajotovic, S.J. Buckman, Phys. Rev. Lett. 90, 203201 (2003)

    Article  ADS  Google Scholar 

  69. C.S. Trevisan, K. Houfek, Z. Zhang, A.E. Orel, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 71, 052714 (2005)

    Article  ADS  Google Scholar 

  70. M. Allan, J. Phys. B 38, 603 (2005)

    Article  ADS  Google Scholar 

  71. P.J. Espy, C.R. Harris, A.J. Steed, J.C. Ulwick, R.H. Haycock, R. Straka, Plan. Space Sci. 36, 543 (1988)

    Article  ADS  Google Scholar 

  72. L. Campbell, D.C. Cartwright, M.J. Brunger, P.J.O. Teubner, J. Geophys. Res. 111, A09317 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A.P. Lima.

Electronic supplementary material

Fig. S.1.

PDF file

Animation 1

MP4 file

Animation 2

MP4 file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridenti, M., Filho, J., Brunger, M. et al. Electron scattering by biomass molecular fragments: useful data for plasma applications?. Eur. Phys. J. D 70, 161 (2016). https://doi.org/10.1140/epjd/e2016-70272-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70272-8

Navigation