Skip to main content
Log in

On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000–100 000 K), different pressures (10-6–100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Askari, S.K. Hannani, R. Ebrahimi, J. Mech. Sci. Technol. 26, 1205 (2012)

    Article  Google Scholar 

  2. F.R. Gilmore, Equilibrium Composition and Thermodynamic Properties of Air to 24 000° K, U.S. Air Force, The Rand Corporation, Report No. RM-1543, 1955

  3. F.R. Gilmore, Additional Values for the Equilibrium Composition and Thermodynamic Properties of Air, U.S. Air Force, The RAND Corporation, Report No. RM-2328, 1959

  4. C.F. Hansen, S.P. Heims, A review of the thermodynamic, transport and chemical reaction rate properties of high temperature air, National Advisory Committee for Aeronautics (NACA), Report No. TN-4359, 1958

  5. C.F. Hansen, Thermodynamic and transport properties of high temperature air, Advisory Group for Aeronautical Research and Development, Report No. 323, 1959

  6. C.F. Hansen, Approximation for the thermodynamic and transport properties of high temperature air, National Aeronautics and Space Administration (NASA), Report No. R-50, 1960

  7. B.M. Rosenbaum, L. Levitt, Thermodynamic Properties of Hydrogen from Room Temperature to 100 000 K, National Aeronautics and Space Administration (NASA), Report No. TN-1107, 1962

  8. W.J. Lick, H.W. Emmons, Thermodynamic Properties of Helium to 50 000 K (Harvard University Press, Cambridge, Massachusetts, 1962)

  9. W.G. Browne, Thermodynamic Properties of the Earth’s Atmosphere, Radiation and Space Phys. Tech. Mem. No. 2, Missile and Space Div., Gen. Elec. Co., 1962

  10. W.G. Browne, Equilibrium Thermodynamic Properties of the Environment of Mars, Advanced Aerospace Phys. Tech. Mem. No. 2, Missile and Space Vehicle Dept., Gen. Elec. Co., 1962

  11. W.G. Browne, Thermodynamic Properties of the Venusian Atmosphere - Part 1, Advanced Aerospace Phys. Tech. Mem. No. 13, pt. 1, Missile and Space Vehicle Dept., Gen. Elec. Co., 1962

  12. K.S. Drellishak, C.F. Knopp, A.B. Cambel, Phys. Fluids 6, 1280 (1963)

    Article  ADS  Google Scholar 

  13. R.F. Kubin, L.L. Presley, Thermodynamic Properties and Mollier Chart for Hydrogen from 300 K to 20 000 K, National Aeronautics and Space Administration (NASA), Report No. SP-3002, 1964

  14. R.W. Patch, B.J. McBride, Partition functions and thermodynamic properties to high temperatures for H+3 and H+2, National Aeronautics and Space Administration (NASA), Report No. D-4523, 1958

  15. R.W. Patch, Components of a hydrogen plasma including minor species, National Aeronautics and Space Administration (NASA), Report No. D-4993, 1969

  16. F. Nelson, Thermodynamic properties of hydrogen-helium plasmas, NASA CR-1861, 1971

  17. B. Pateyron, M.F. Elchinger, G. Delluc, P. Fauchais, Plasma Chem. Plasma Process. 12, 421 (1992)

    Article  Google Scholar 

  18. S. Janisson, A. Vardelle, J.F. Coudert, E. Meillot, B. Pateyron, P. Fauchais, J. Thermal Spray Technol. 8, 545 (1999)

    Article  ADS  Google Scholar 

  19. E. Sher, J. Ben-ya’ish, T. Kravchik, Combustion and Flame 89, 186 (1992)

    Article  Google Scholar 

  20. M. Capitelli, G. Colonna, C. Gorse, Mol. Phys. Hypersonic Flows 482, 293 (1995)

    Google Scholar 

  21. M. Capitelli, G. Colonna, C. Gorse, Eur. Phys. J. D 11, 279 (2000)

    Article  ADS  Google Scholar 

  22. D. Bruno, M. Capitelli, C. Catalfamo, D. Giordano, Phys. Plasmas 18, 012308 (2011)

    Article  ADS  Google Scholar 

  23. M. Capitelli, S. Longo, G. Petrella, D. Giordano, Plasma Chem. Plasma Process. 25, 659 (2005)

    Article  Google Scholar 

  24. M. Capitelli, G. Colonna, A. D’Angola, Pulsed Power Plasma Sci. 1, 694 (2001)

    Google Scholar 

  25. A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 46, 129 (2007)

    Article  Google Scholar 

  26. V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, Phys. Rev. E 64, 026409 (2001)

    Article  ADS  Google Scholar 

  27. A.B. Murphy, Plasma Chem. Plasma Process. 20, 279 (2000)

    Article  Google Scholar 

  28. A.B. Murphy, IEEE Trans. Plasma Sci. 25, 809 (1997)

    Article  ADS  Google Scholar 

  29. O. Askari, H. Metghalchi, S. Kazemzadeh Hannani, A. Moghaddas, R. Ebrahimi, H. Hemmati, J. Energy Resour. Technol. 135, 021001 (2012)

    Article  Google Scholar 

  30. O. Askari, H. Metghalchi, S. Kazemzadeh Hannani, H. Hemmati, R. Ebrahimi, J. Energy Resour. Technol. 136, 022202 (2014)

    Article  Google Scholar 

  31. S. Gordon, B.J. Mcbride, Thermodynamic Data to 20 000 K for Monatomic Gases, National Aeronautics and Space Administration (NASA), Glenn Research Center, Report No. TP-1999-208523, 1999

  32. H.R. Griem, Phys. Rev. 128, 997 (1962)

    Article  ADS  Google Scholar 

  33. W.B. White, S.M. Johnson, G.B. Dantzig, J. Chem. Phys. 28, 751 (1958)

    Article  ADS  Google Scholar 

  34. S. Gordon, B.J. Mcbride, Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis, National Aeronautics and Space Administration (NASA), Report No. RP-1311, 1994

  35. K. Eisazadeh-Far, F. Parsinejad, H. Metghalchi, J.C. Keck, Combustion and Flame 157, 2211 (2010)

    Article  Google Scholar 

  36. K. Eisazadeh-Far, H. Metghalchi, J.C. Keck, J. Energy Resour. Technol. 133, 022201 (2011)

    Article  Google Scholar 

  37. E. Rokni, A. Moghaddas, O. Askari, H. Metghalchi, J. Energy Resour. Technol. 137, 012204 (2014)

    Article  Google Scholar 

  38. O. Askari, A. Moghaddas, A. Alholm, K. Vein, B. Alhazmi, H. Metghalchi, Combustion and Flames 168, 20 (2016)

    Article  Google Scholar 

  39. O. Askari, M. Janbozorgi, R. Greig, A. Moghaddas, H. Metghalchi, Sci. Technol. Built Environ. 21, 220 (2015)

    Article  Google Scholar 

  40. O. Askari, K. Vien, Z. Wang, M. Sirio, H. Metghalchi, J. Appl. Energy (2016)

  41. F.T. Mackenzie, J.A. Mackenzie, Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change, 4th edn. (Prentice Hall, 2010)

  42. E.P. Gyftopoulos, G.P. Beretta, Thermodynamics: Foundations and Applications (Dover Publications, Mineola, NY, 2005)

  43. J.A. Fay, Molecular thermodynamic (Addison-Wesley, Massachusetts, 1965)

  44. H.N. Olsen, Phys. Rev. 124, 1703 (1961)

    Article  ADS  Google Scholar 

  45. Mc M. Chesney, Can. J. Phys. 42, 2473 (1964)

    Article  ADS  Google Scholar 

  46. L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamic properties of individual substances (Hemisphere Publishing Corporation, New York, 1989)

  47. M.W. Zemansky, Heat and Thermodynamics: An Intermediate Textbook for Students of Physics, Chemistry, and Engineering, 4th edn. (McGraw-Hill, New York, 1957)

  48. H. Myers, J.H. Buss, S.W. Benson, Planetary Space Science 3, 257 (1961)

    Article  ADS  Google Scholar 

  49. H.R. Griem, Principle of Plasma Spectroscopy (McGraw-Hill, 1964)

  50. C.E. Moore, Atomic energy levels, U.S. Department of Commerce, National Bureau of Standards, NSRDS-NBS 35, Vol. 1. (1971)

  51. H.G. Kuhn, Atomic Spectra (Academic Press, New York, 1962)

  52. J. Cooper, Rep. Prog. Phys. 35, 34 (1966)

    Google Scholar 

  53. Y.B. Zel’dovich, Y.P. Raizer, W.D. Hayes, R.F. Probstein, Physics of shock waves and high temperature hydrodynamics phenomena (Academic Press, New York and London, 1966)

  54. J. Hilsenrath, M. Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections From 1500 K to 150 000 K, AEDC-TR-65-58, U.S. Air Force, Mar. 1965

  55. M. Capitelli, E.F. Varracchio, Rev. Int. Htes Temp. Refract. 14, 195 (1977)

    Google Scholar 

  56. R.M. Sevast’yanov, R.A. Chernyavskaya, J. Eng. Phys. 51, 851 (1986)

    Article  Google Scholar 

  57. Y. Cressault, A. Gleizes, G. Riquel, J. Phys. D 45, 265202 (2012)

    Article  ADS  Google Scholar 

  58. B. Bottin, Progress Aerospace Sci. 36, 547 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Askari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, O., Beretta, G., Eisazadeh-Far, K. et al. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases. Eur. Phys. J. D 70, 159 (2016). https://doi.org/10.1140/epjd/e2016-70195-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70195-4

Keywords

Navigation