Skip to main content
Log in

Effect of cluster environment on the electron attachment to 2-nitrophenol

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Effect of cluster environment on the electron attachment to 2-nitrophenol (2NP) is studied in homogeneous 2NP clusters and heterogeneous clusters of 2NP, argon and water. The cluster environment significantly reduces fragmentation of 2NP after electron attachment. Parent cluster anions 2NPn - are primary reaction products in both, homogeneous and heterogeneous clusters. Non-dissociative electron attachment to homogeneous clusters proceeds at low energies <2 eV, presumably via dipole-supported states. In heterogeneous clusters, the interaction with low energy (<2 eV) electrons is shielded by the solvent. Surprisingly, the energetic threshold for the electron attachment rises with the number (n) of 2NP molecules in the cluster (2NP)n -. This rise can be either due to a strong change of the 2NP conformation induced by the cluster environment or due to the the competition with electron autodetachment after proton transfer that has been first observed by Allan in the formic acid dimer [M. Allan, Phys. Rev. Lett. 98, 123201 (2007)]. We observe the same threshold rise for complex Ar m ·(2NP)n - and H2O·(2NP)n - anions. This indicates that the electron attachment to 2-nitrophenol in cluster environment is more influenced by the solute − solute interaction compared to the solute − solvent interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Gomez-Tejedor, M.C. Fuss, Radiation Damage in Biomolecular Systems (Springer Netherlands, 2012)

  2. Q.B. Lu, L. Sanche, Phys. Rev. Lett. 87, 078501 (2001)

    Article  ADS  Google Scholar 

  3. A. Lafosse, M. Bertin, A. Domaracka, D. Pliszka, E. Illenberger, R. Azria, Phys. Chem. Chem. Phys. 8, 5564 (2006)

    Article  Google Scholar 

  4. I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. 26, 1197 (2008)

    Article  Google Scholar 

  5. B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  6. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    Article  ADS  Google Scholar 

  7. E. Alizadeh, T.M. Orlando, L. Sanche, Ann. Rev. Phys. Chem. 66, 379 (2015)

    Article  ADS  Google Scholar 

  8. O. Echt, M. Knapp, C. Schwarz, E. Recknagel, in Large Finite Systems, edited by J. Jortner, A. Pullman, B. Pullman (Springer, Netherlands, 1987), p. 179

  9. E. Illenberger, Chem. Rev. 92, 1589 (1992)

    Article  Google Scholar 

  10. Y. Wang, X. Zhang, S. Lyapustina, M.M. Nilles, S. Xu, J.D. Graham, H.H. Bowen, J.T. Kelly, G.S. Tschumper, N.I. Hammer, Phys. Chem. Chem. Phys. 18, 704 (2015)

    Article  Google Scholar 

  11. J. Gu, J. Leszczynski, F.F. Schaefer, Chem. Rev. 112, 5608 (2012)

    Article  Google Scholar 

  12. I. Dabkowska, J. Rak, M. Gutowski, J.M. Nilles, S.T. Stokes, K.H. Bowen, J. Chem. Phys. 120, 6064 (2004)

    Article  ADS  Google Scholar 

  13. I. Martin, T. Skalicky, J. Langer, H. Abdoul-Carime, G. Karwasz, E. Illenberger, M. Stano, S. Matejcik, Phys. Chem. Chem. Phys. 7, 2212 (2005)

    Article  Google Scholar 

  14. M. Allan, Phys. Rev. Lett. 98, 123201 (2007)

    Article  ADS  Google Scholar 

  15. R.A. Bachorz, M. Haranczyk, I. Dabkowska, J.R. Nad M. Gutowski, J. Chem. Phys. 122, 204304 (2005)

    Article  ADS  Google Scholar 

  16. H.K. Gerardi, A.F. DeBlase, C.M. Leavitt, X. Su, K.D. Jordan, M.A. McCoy, A. Johnson, J. Chem. Phys. 136, 134318 (2012)

    Article  ADS  Google Scholar 

  17. M. Neustetter, J. Aysina, F.F. da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015)

    Article  Google Scholar 

  18. A.R. Allouche, J. Comput. Chem. 32, 174 (2011)

    Article  Google Scholar 

  19. M. Nagaya, S. Kudoh, M. Nakata, Chem. Phys. Lett. 427, 67 (2006)

    Article  ADS  Google Scholar 

  20. A. Modellia, M. Venuti, Int. J. Mass Spectrom. 205, 7 (2001)

    Article  Google Scholar 

  21. B.W. LaFranchi, G.A. Petrucci, J. Am. Soc. Mass Spectrom. 15, 424 (2004)

    Article  Google Scholar 

  22. V. Poterya, J. Kočišek, A. Pysanenko, M. Fárník, Phys. Chem. Chem. Phys. 16, 421 (2014)

    Article  Google Scholar 

  23. J. Lengyel, J. Kočišek, V. Poterya, A. Pysanenko, P. Svrčková, M. Fárník, D. Zaouris, J. Fedor, J. Chem. Phys. 137, 034304 (2012)

    Article  ADS  Google Scholar 

  24. J. Lengyel, A. Pysanenko, V. Poterya, J. Kočišek, M. Fárník, Chem. Phys. Lett. 612, 256 (2014)

    Article  ADS  Google Scholar 

  25. J. Kočišek, J. Lengyel, M. Fárník, J. Chem. Phys. 138, 124306 (2013)

    Article  ADS  Google Scholar 

  26. M.V. Muftakhov, R.V. Khatymov, P.V. Shchukin, A.V. Pogulay, V.A. Mazunov, J. Mass Spectrom. 45, 82 (2010)

    Google Scholar 

  27. R. Janečková, O. May, A. Milosavljević, J. Fedor, Int. J. Mass Spectrom. 365-366, 163 (2010)

    Article  Google Scholar 

  28. C. Koenig-Lehmann, J. Kopyra, I. Dabkowska, J. Kocisek, E. Illenberger, Phys. Chem. Chem. Phys. 10, 6954 (2008)

    Article  Google Scholar 

  29. M. Smyth, J. Kohanoff, I.I. Fabrikant, J. Chem. Phys. 140, 184313 (2014)

    Article  ADS  Google Scholar 

  30. C. Desfrancois, V. Periquet, S.A. Lyapustina, T.P. Lippa, R.D. W., H. Bowen, K.H. Nonaka, R.N. Compton, J. Chem. Phys. 111, 4569 (1999)

    Article  ADS  Google Scholar 

  31. O. Inglfsson, F. Weik, E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996)

    Article  ADS  Google Scholar 

  32. J. Kočišek, J. Lengyel, M. Fárník, P. Slavíček, J. Chem. Phys. 139, 214308 (2013)

    Article  ADS  Google Scholar 

  33. F. Ferreira da Silva, S. Denifl, T. Mark, A.M. Ellis, P. Scheier, J. Chem. Phys. 132, 214306 (2010)

    Article  ADS  Google Scholar 

  34. W.C. Simpson, T.M. Orlando, L. Parenteau, K. Nagesha, L. Sanche, J. Phys. Chem. 108, 5027 (1998)

    Article  Google Scholar 

  35. V. Periquet, A. Moreau, S. Carles, J. Schermann, C. Desfrançois, J. Electron Spectrosc. Relat. Phenomena 106, 141 (2000)

    Article  Google Scholar 

  36. H.A. Ernst, T.J.A. Wolf, O. Schalk, N. Gonzlez-Garca, A.E. Boguslavskiy, A. Stolow, M. Olzmann, A.N. Unterreiner, J. Phys. Chem. A 119, 9225 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kočišek.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kočišek, J., Grygoryeva, K., Lengyel, J. et al. Effect of cluster environment on the electron attachment to 2-nitrophenol. Eur. Phys. J. D 70, 98 (2016). https://doi.org/10.1140/epjd/e2016-70074-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70074-0

Navigation