Skip to main content
Log in

An indirect measurement protocol of intracavity mode quadratures dispersion in dynamical Casimir effect

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This work deals with the problem of photon detection generated from the mirror-induced dynamical Casimir Effect. Particularly we are interested in measurement of those statistical characteristics of a generated intracavity field which may confirm its nonthermal properties. Here an indirect protocol for quadrature dispersion measurement is presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Lamoreaux, Phys. Rev. Lett. 75, 5 (1997)

    Article  ADS  Google Scholar 

  2. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  3. S.W. Hawking, Commun. Math. Phys. 25, 152 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Moore, J. Math. Phys. 11, 2679 (1970)

    Article  ADS  Google Scholar 

  5. R.L. Jaffe, Phys. Rev. D 72, 021301 (2005)

    Article  ADS  Google Scholar 

  6. E. Sassaroli, Y.N. Srivastava, A. Widom, Phys. Rev. A 50, 1027 (1996)

    Article  ADS  Google Scholar 

  7. C.K. Law, Phys. Rev. A 49, 433 (1994)

    Article  ADS  Google Scholar 

  8. V.V. Dodonov, A.B. Klimov, Phys. Rev. A 53, 2664 (1996)

    Article  ADS  Google Scholar 

  9. R. Schutzhold, G. Plunien, G. Soff, Phys. Rev. A 57, 2311 (1998)

    Article  ADS  Google Scholar 

  10. R. Schutzhold, G. Plunien, G. Soff, Phys. Rev. A 58, 1783 (1998)

    Article  ADS  Google Scholar 

  11. M. Crocce, D.A.R. Dalvit, F.D. Mazzitelli, Phys. Rev. A 64, 013808 (2001)

    Article  ADS  Google Scholar 

  12. E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989)

    Article  ADS  Google Scholar 

  13. W. Kim, J. Brownell, R. Onofrio, Phys. Rev. Lett. 96, 200402 (2006)

    Article  ADS  Google Scholar 

  14. C. Braggio et al., Europhys. Lett. 70, 754 (2005)

    Article  ADS  Google Scholar 

  15. E. Segev et al., Phys. Lett. A 370, 202 (2007)

    Article  ADS  Google Scholar 

  16. C.M. Wilson et al., Phys. Rev. Lett. 105, 233907 (2010)

    Article  ADS  Google Scholar 

  17. C. Ciuti, G. Bastard, I. Carusotto, Phys. Rev. B 72, 115303 (2005)

    Article  ADS  Google Scholar 

  18. S. De Liberato, C. Ciuti, I. Carusotto, Phys. Rev. Lett. 98, 103602 (2007)

    Article  ADS  Google Scholar 

  19. V.V. Dodonov, A.B. Klimov, D.E. Nikonov, Phys. Rev. A 47, 4422 (1993)

    Article  ADS  Google Scholar 

  20. V.V. Dodonov, Phys. Scr. 85, 038105 (2010)

    Article  ADS  Google Scholar 

  21. C.M. Wilson et al., Nature 479, 376 (2011)

    Article  ADS  Google Scholar 

  22. P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Proc. Natl. Acad. Sci. USA 110, 4234 (2013)

    Article  ADS  Google Scholar 

  23. A.V. Dodonov, V.V. Dodonov, Phys. Lett. A 375, 4261 (2011)

    Article  ADS  MATH  Google Scholar 

  24. A.V. Dodonov, V.V. Dodonov, Phys. Rev. A 85, 063804 (2012)

    Article  ADS  Google Scholar 

  25. A.V. Dodonov, V.V. Dodonov, Phys. Rev. A 86, 015801 (2012)

    Article  ADS  Google Scholar 

  26. A.V. Dodonov, V.V. Dodonov, Phys. Rev. A 85, 055805 (2012)

    Article  ADS  Google Scholar 

  27. H.-J. Briegel, B.-G. Englert, N. Sterpi, H. Walther, Phys. Rev. A 49, 2962 (1994)

    Article  ADS  Google Scholar 

  28. D. Meschede, H. Walther, G. Muller, Phys. Rev. Lett. 54, 551 (1985)

    Article  ADS  Google Scholar 

  29. A.V. Dodonov, V.V. Dodonov, Phys. Rev. A 85, 015805 (2012)

    Article  ADS  Google Scholar 

  30. P.D. Nation et al., Rev. Mod. Phys. 84, 1 (2012)

    Article  ADS  Google Scholar 

  31. V.B. Braginsky, F.Ya. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)

  32. S.K. Choudhary, T. Konrad, H. Uys, Phys. Rev. A 87, 012131 (2013)

    Article  ADS  Google Scholar 

  33. A.I. Trifanov, G.P. Miroshnichenko, Phys. Chem. Math. 4, 635 (2013)

    Google Scholar 

  34. A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. A 75, 013806 (2007)

    Article  ADS  Google Scholar 

  35. G.P. Miroshnichenko, A.I. Trifanov, Eur. Phys. J. D 67, 60 (2013)

    Article  ADS  Google Scholar 

  36. G.P. Miroshnichenko, A.I. Trifanov, Phys. Scr. T 160, 014042 (2014)

    ADS  Google Scholar 

  37. K. Kraus, Fundamental notions of quantum theory (Springer-Verlag, Berlin, Heldeiberg, 1983)

  38. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Trifanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, G.P., Trifanova, E.S. & Trifanov, A.I. An indirect measurement protocol of intracavity mode quadratures dispersion in dynamical Casimir effect. Eur. Phys. J. D 69, 137 (2015). https://doi.org/10.1140/epjd/e2015-60023-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60023-x

Keywords

Navigation