Skip to main content
Log in

Discrete breather and soliton-mode collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have studied the dynamic evolution of the collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions. Their dynamics is governed by a high order discrete nonlinear Schrödinger equation (DNLSE). The dynamical phase diagram of the system is obtained using the variational method. The dynamical evolution shows very interesting features. The discrete breather phase totally disappears in the regime where the three-body interaction completely dominates over the two-body interaction. The soliton phase in this particular regime exists only when the soliton line approaches the critical line in the phase diagram. When weak two-body interactions are reintroduced into this regime, the discrete breather solutions reappear, but occupies a very small domain in the phase space. Likewise, in this regime, the soliton as well as the discrete breather phases completely disappear if the signs of the two-and three-body interactions are opposite. We have analysed the causes of this unusual dynamical evolution of the collective excitations of the Bose-Einstein condensate with tunable interactions. We have also performed direct numerical simulations of the governing DNLS equation to show the existence of the discrete soliton solution as predicted by the variational calculations, and also to check the long term stability of the soliton solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Kraemer et al., Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  2. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  3. B. Huang et al., Phys. Rev. Lett. 112, 190401 (2014)

    Article  ADS  Google Scholar 

  4. S. Will et al., Nature 465, 09036 (2010)

    Article  Google Scholar 

  5. A. Safavi-Naini et al., Phys. Rev. Lett. 109, 135302 (2012)

    Article  ADS  Google Scholar 

  6. F. Ferlaino, R. Grimm, Physics 3, 9 (2010)

    Article  Google Scholar 

  7. T. Lompe et al., Science 330, 940 (2010)

    Article  ADS  Google Scholar 

  8. A.J. Daley, J. Simon, Phys. Rev. A 89, 053619 (2014)

    Article  ADS  Google Scholar 

  9. L. Pitaevskii, S. Stringari Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)

  10. B. Eiermann et al., Phys. Rev. Lett. 92, 230401 (2004)

    Article  ADS  Google Scholar 

  11. R. Sarkar, B. Dey, Phys. Rev. E 76, 016605 (2007) and references therein

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Bartenstein et al., Phys. Rev. Lett. 92, 203201 (2004)

    Article  ADS  Google Scholar 

  13. Y. Wen-Mei et al., Commun. Theor. Phys. 51, 433 (2009)

    Article  ADS  MATH  Google Scholar 

  14. L. Guan-Qiang et al., Phys. Rev. A 74, 055601 (2006)

    Article  ADS  Google Scholar 

  15. L. Guan-Qiang et al., Commun. Theor. Phys. 50, 1129 (2008)

    Article  ADS  Google Scholar 

  16. H. Ji-Xuan, Phys. Lett. A 368, 366 (2007)

    Article  ADS  Google Scholar 

  17. L. Hao-Cai et al., Chin. Phys. Lett. 27, 030304 (2010)

    Article  Google Scholar 

  18. P. Ping, L. Guan-Qiang, Chin. Phys. B 18, 3221 (2009)

    Article  ADS  Google Scholar 

  19. E.B. Kolomeisky, T.J. Newman, J.P. Straley, X. Qi, Phys. Rev. Lett. 85, 1146 (2000)

    Article  ADS  Google Scholar 

  20. E.H. Lieb, R. Seiringer, J. Yngvason, Phys. Rev. Lett. 91, 150401 (2003)

    Article  ADS  Google Scholar 

  21. T. Kohler, Phys. Rev. Lett. 89, 210404 (2002)

    Article  ADS  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley and Sons Ltd., Singapore, 1996)

  23. A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)

    Article  ADS  Google Scholar 

  24. A. Trombettoni, A. Smerzi, J. Phys. B 34, 4711 (2001)

    Article  ADS  Google Scholar 

  25. F.Kh. Abdullaev et al., Phys. Rev. A 64, 043606 (2001)

    Article  ADS  Google Scholar 

  26. G.L. Alfimov et al., Phys. Rev. E 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Maluckov, L. Hadžievski, B.A. Malomed, Phys. Rev. E 76, 046605 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002), Chap. 7

  29. J.J.G. Ripoli, V.M. Perez-Garcia, Phys. Rev. A 59, 2220 (1999)

    Article  ADS  Google Scholar 

  30. V.M. Perez-Garcia et al., Phys. Rev. A 56, 1424 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajyoti Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakhaly, G.A., Dey, B. Discrete breather and soliton-mode collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions. Eur. Phys. J. D 69, 92 (2015). https://doi.org/10.1140/epjd/e2015-50464-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50464-6

Keywords

Navigation