Skip to main content

Advertisement

Log in

Analytical potential energy functions for some interhalogen diatomic electronic states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The studies of vibrational energies and analytical potential energy functions (APEFs) have been carried out for four interhalogen diatomic electronic states B(3 Π 0 +) and A(3 Π 1) of ClF, A′(3 Π 2u ) of Cl2, and the ground state X 1 Σ + g of Br2 by using an improved variational algebraic energy-consistent method (VAECM(4)). The full vibrational energies, the vibrational spectroscopic constants, the force constants f n , and the expansion coefficients a n of the ECM (energy-consistent method) potential are tabulated. The VAECM(4) APEF with adjustable variational parameter λ for each electronic state is determined, and is shown to be in excellent agreement with available experimental data and has no any artificial barrier in all the calculation ranges that may appear in some other analytical potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.D. Coombe, D. Pilipovich, R.K. Horne, J. Phys. Chem. 82, 2484 (1978)

    Article  Google Scholar 

  2. I.S. McDermid, J. Chem. Soc. Faraday Trans. II 77, 519 (1981)

    Article  Google Scholar 

  3. W.A. de Jong, J. Styszynski, L. Visscher, W.C. Nieuwpoort, J. Chem. Phys. 108, 5177 (1998)

    Article  ADS  Google Scholar 

  4. V.A. Alekseev, D.W. Setser, J. Chem. Phys. 107, 4771 (1997)

    Article  ADS  Google Scholar 

  5. V.A. Alekseev, D.W. Setser, J. Tellinghuisen, J. Mol. Spectrosc. 194, 61 (1999)

    Article  ADS  Google Scholar 

  6. V.A. Alekseev, D.W. Setser, Bull. Korean Chem. Soc. 21, 9 (2000)

    Google Scholar 

  7. J.H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147, 334 (1991)

    Article  ADS  Google Scholar 

  8. M.S.N. Alkahali, R.J. Donovan, K.P. Lawley, Z.Y. Min, T. Ridley, J. Chem. Phys. 104, 1825 (1996)

    Article  ADS  Google Scholar 

  9. D.B. Kokh, A.B. Alekseyev, R.J. Buenker, J. Chem. Phys. 120, 11549 (2004)

    Article  ADS  Google Scholar 

  10. K. Balasubramanian, Chem. Phys. 119, 41 (1988)

    Article  ADS  Google Scholar 

  11. C. Focsa, H. Li, P.F. Bernath, J. Mol. Spectrosc. 200, 104 (2000)

    Article  ADS  Google Scholar 

  12. S. Gerstenkorn, P. Luc, A. Raynal, J. Sinzelle, J. Phys. 48, 1685 (1987)

    Article  Google Scholar 

  13. S. Gerstenkorn, P. Luc, J. Phys. France 50, 1417 (1989)

    Article  Google Scholar 

  14. J. da Silva Gomes, R. Gargano, J.B.L. Martins, L.G.M. de Macedo, J. Phys. Chem. A 118, 5818 (2014)

    Google Scholar 

  15. J. Neugebauer, E.J. Baerends, M. Nooijen, J. Chem. Phys. 121, 6155 (2004)

    Article  ADS  Google Scholar 

  16. A.M. Teale, D.J. Tozer, J. Chem. Phys. 122, 034101 (2005)

    Article  ADS  Google Scholar 

  17. D. Marshall, J. Quant. Spectrosc. Radiat. Trans. 109, 2546 (2008)

    Article  ADS  Google Scholar 

  18. W.G. Sun, Mol. Phys. 92, 105 (1997)

    Article  ADS  Google Scholar 

  19. W.G. Sun, H. Feng, J. Phys. B 32, 5109 (1999)

    Article  ADS  Google Scholar 

  20. W.G. Sun, S.L. Hou, H. Feng, W.Y. Ren, J. Mol. Spectrosc. 215, 93 (2002)

    Article  ADS  Google Scholar 

  21. W.Y. Ren, W.G. Sun, S.L. Hou, H. Feng, Sci. China Ser. G 48, 385 (2005)

    Article  Google Scholar 

  22. Y. Zhang, W.G. Sun, J. Fu, Q.C. Fan, J. Ma, L.T. Xiao, S.T. Jia, H. Feng, H.D. Li, J. Quant. Spectrosc. Radiat. Trans. 120, 81 (2013)

    Article  ADS  Google Scholar 

  23. Q.C. Fan, W.G. Sun, H. Feng, Y. Zhang, Q. Wang, Eur. Phys. J. D 68, 5 (2014)

    Article  ADS  Google Scholar 

  24. J.L. Dunham, Phys. Rev. 41, 721 (1932)

    Article  ADS  Google Scholar 

  25. V.A. Alekseev, D.W. Setser, J. Tellinghuisen, J. Mol. Spectrosc. 195, 162 (1999)

    Article  ADS  Google Scholar 

  26. V.A. Alekseev, Opt. Spectrosc. 95, 676 (2003)

    Article  ADS  Google Scholar 

  27. A.A. Vassilakis, A. Kalemos, A. Mavridis, Theor. Chem. Acc. 133, 1436 (2014)

    Article  Google Scholar 

  28. P.C. Tellinghuisen, B. Guo, D.K. Chakraborty, J. Tellinghuisen, J. Mol. Spectrosc. 128, 268 (1988)

    Article  ADS  Google Scholar 

  29. N.K. Bibinov, V.K. Davydov, A.A. Fateev, D.B. Kokh, E.V. Lugovoj, C. Ottinger, A.M. Pravilov, J. Chem. Phys. 109, 10864 (1998)

    Article  ADS  Google Scholar 

  30. L.G. de Macedo, W.A. de Jong, J. Chem. Phys. 128, 041101 (2008)

    Article  ADS  Google Scholar 

  31. A.J. Johnsen, A.B. Alekseyev, G.G Balint-Kurti, M. Brouard, A. Brown, R.J. Buenker, E.K. Campbell, D.B. Kokh, J. Chem. Phys. 136, 164310 (2012)

    Article  ADS  Google Scholar 

  32. Y.J. Jee, M.S. Park, Y.S. Kim, Y.J. Jung, K.H. Jung, Chem. Phys. Lett. 287, 701 (1998)

    Article  ADS  Google Scholar 

  33. G. Kerenskaya, I.U. Goldschleger, V.A. Apkarian, K.C. Janda, J. Phys. Chem. A 110, 13792 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunchao Fan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Fan, Z., Nie, Y. et al. Analytical potential energy functions for some interhalogen diatomic electronic states. Eur. Phys. J. D 69, 30 (2015). https://doi.org/10.1140/epjd/e2014-50639-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50639-7

Keywords

Navigation