Skip to main content
Log in

Structure investigation of CoxO +y (x=3–6, y=3–8) clusters by IR vibrational spectroscopy and DFT calculations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cationic cobalt oxide clusters of several sizes and stoichiometries have been synthesized and studied isolated in the gas phase. Vibrational spectra of the clusters have been measured using resonant IR-induced dissociation of Co x Oy + · O2 \hbox{$\overset{h\nu}{\rightarrow}$} → hν Co x Oy + + O2 in the 260–1400 cm-1 range. Density functional theory was used to investigate the geometry and spin configuration of Co x Oy + clusters in the range x = 3-6, y = 3-8. Lowest energy structures with IR vibrational spectra which agree reasonably well with the experiment are found for several cluster sizes. The magnetic ordering within all but one cluster size, Co6O8 +, is found to have an antiferromagnetic component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.W. Castleman, S.N. Khanna, J. Phys. Chem. C 113, 2664 (2009)

    Article  Google Scholar 

  2. Clusters and Nano-Assemblies, edited by P. Jena,S.N. Khanna,B.K. Rao (World Scientific, New Jersey, 2003)

  3. A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, G. Meijer, Phys. Rev. Lett. 93, 023401 (2004)

    Article  ADS  Google Scholar 

  4. A. Fielicke, G. von Helden, G. Meijer, Eur. Phys. J. D 34, 83 (2005)

    Article  ADS  Google Scholar 

  5. K.R. Asmis, J. Sauer, Mass Spectrom. Rev. 26, 542 (2007)

    Article  Google Scholar 

  6. D. van Heijnsbergen, G. von Helden, M.A. Duncan, A.J.A. van Roij, G. Meijer, Phys. Rev. Lett. 83, 4983 (1999)

    Article  ADS  Google Scholar 

  7. X. Xu, S. Yin, R. Moro, W.A. de Heer, Phys. Rev. Lett. 95, 237209 (2005)

    Article  ADS  Google Scholar 

  8. R. Moro, X. Xu, S. Yin, W.A. de Heer, Science 300, 1265 (2003)

    Article  ADS  Google Scholar 

  9. S.E. Apsel, J.W. Emmert, J. Deng, L.A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996)

    Article  ADS  Google Scholar 

  10. D.C. Douglass, A.J. Cox, J.P. Bucher, L.A. Bloomfield, Phys. Rev. B 47, 12874 (1993)

    Article  ADS  Google Scholar 

  11. M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  12. K.R. Asmis, A. Fielicke, G. von Helden, G. Meijer, in The Chemical Physics of Solid Surfaces, edited by D.P. Woodruff (Elsevier, Amsterdam, 2007), Vol. 12, p. 327

  13. M. Brümmer, C. Kaposta, G. Santambrogio, K.R. Asmis, J. Chem. Phys. 119, 12700 (2003)

    Article  ADS  Google Scholar 

  14. K.R. Asmis, G. Meijer, M. Brümmer, C. Kaposta, G. Santambrogio, L. Woste, J. Sauer, J. Chem. Phys. 120, 6461 (2004)

    Article  ADS  Google Scholar 

  15. K. Demyk, D. van Heijnsbergen, G. von Helden, G. Meijer, A&A 420, 547 (2004)

    Article  ADS  Google Scholar 

  16. G. von Helden, A. Kirilyuk, D. van Heijnsbergen, B. Sartakov, M.A. Duncan, G. Meijer, Chem. Phys. 262, 31 (2000)

    Article  ADS  Google Scholar 

  17. A. Kirilyuk, A. Fielicke, K. Demyk, G. von Helden, G. Meijer, T. Rasing, Phys. Rev. B 82, 020405 (2010)

    Article  ADS  Google Scholar 

  18. Y. Wang, Q. Chen, J. Wang, J. Nanosci. Nanotechnol. 12, 6488 (2012)

    Article  Google Scholar 

  19. R.B. Freas, B.I. Dunlap, B.A. Waite, J.E. Campana, J. Chem. Phys. 86, 1276 (1987)

    Article  ADS  Google Scholar 

  20. G.E. Johnson, J.U. Reveles, N.M. Reilly, E.C. Tyo, S.N. Khanna, A.W. Castleman, J. Phys. Chem. A 112, 11330 (2008)

    Article  Google Scholar 

  21. G.V. Chertihin, A. Citra, L. Andrews, C.W. Bauschlicher, J. Phys. Chem. A 101, 8793 (1997)

    Article  Google Scholar 

  22. D. Danset, L. Manceron, Phys. Chem. Chem. Phys. 7, 583 (2005)

    Article  Google Scholar 

  23. E.L. Uzunova, H. Mikosch, J. Phys. Chem. A 116, 3295 (2012)

    Article  Google Scholar 

  24. S.O. Souvi, D. Danset, M.E. Alikhani, L. Manceron, J. Phys. Chem. A 114, 11399 (2010)

    Article  Google Scholar 

  25. A. Fielicke, G. Meijer, G. von Helden, J. Am. Chem. Soc. 125, 3659 (2003)

    Article  Google Scholar 

  26. A. Fielicke, G. Meijer, G. von Helden, Eur. Phys. J. D 24, 69 (2003)

    Article  ADS  Google Scholar 

  27. A. Fielicke, C. Ratsch, G. von Helden, G. Meijer, J. Chem. Phys. 127, 4306 (2007)

    Article  Google Scholar 

  28. C. Ratsch, A. Fielicke, A. Kirilyuk, J. Behler, G. von Helden, G. Meijer, M. Scheffler, J. Chem. Phys. 122, 124302 (2005)

    Article  ADS  Google Scholar 

  29. J.P. Bucher, D.C. Douglass, L.A. Bloomfield, Rev. Sci. Instrum. 63, 5667 (1992)

    Article  ADS  Google Scholar 

  30. J.P. Bucher, D.C. Douglass, L.A. Bloomfield, Phys. Rev. Lett. 66, 3052 (1991)

    Article  ADS  Google Scholar 

  31. B.A. Collings, A.H. Amrein, D.M. Rayner, P.A. Hackett, J. Chem. Phys. 99, 4174 (1993)

    Article  ADS  Google Scholar 

  32. D. Oepts, A.F.G. van der Meer, P.W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995)

    Article  ADS  Google Scholar 

  33. M. Okumura, L.I. Yeh, J.D. Myers, Y.T. Lee, J. Chem. Phys. 85, 2328 (1986)

    Article  ADS  Google Scholar 

  34. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  ADS  Google Scholar 

  35. ADF2007.01, SCM, Theoretical Chemistry (Vrije Universiteit, Amsterdam), http://www.scm.com

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theor. Chem. Acc. 99, 391 (1998)

    Google Scholar 

  38. C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Faraday Discuss. 124, 275 (2003)

    Article  Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, Gaussian 03, revision D.02 (Gaussian Inc., Pittsburgh, 2003)

  40. J. Oomens, G. Meijer, G. von Helden, J. Phys. Chem. A 105, 8302 (2001)

    Article  Google Scholar 

  41. J. Oomens, B.G. Sartakov, G. Meijer, G. von Helden, Int. J. Mass Spectrom. 254, 1 (2006)

    Article  ADS  Google Scholar 

  42. K. Kwapien, M. Sierka, J. Döbler, J. Sauer, M. Haertelt, A. Fielicke, G. Meijer, Angew. Chem. Int. Ed. 50, 1716 (2011)

    Article  Google Scholar 

  43. G. Maroulis, Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability (Imperial College Press, London, 2006)

  44. C.J. Dibble, S.T. Akin, S. Ard, C.P. Fowler, M.A. Duncan, J. Phys. Chem. A 116, 5398 (2012)

    Article  Google Scholar 

  45. K.R. Asmis, M. Brümmer, C. Kaposta, G. Santambrogio, G. Helden, G. Meijer, K. Rademann, L. Wöste, Phys. Chem. Chem. Phys. 4, 1101 (2002)

    Article  Google Scholar 

  46. J.G. Black, E. Yablonovitch, N. Bloembergen, S. Mukamel, Phys. Rev. Lett. 38, 1131 (1977)

    Article  ADS  Google Scholar 

  47. Y. Xie, F. Dong, S. Heinbuch, J.J. Rocca, E.R. Bernstein, Phys. Chem. Chem. Phys. 12, 947 (2010)

    Article  Google Scholar 

  48. M.N. Yi, K.J. Fisher, I.G. Dance, Int. J. Mass Spectrom. 216, 155 (2002)

    Article  ADS  Google Scholar 

  49. S. Yin, W. Xue, X.-L. Ding, W.-G. Wang, S.-G. He, M.-F. Ge, Int. J. Mass Spectrom. 281, 72 (2009)

    Article  ADS  Google Scholar 

  50. K.R. Asmis, G. Santambrogio, M. Brümmer, J. Sauer, Angew. Chem. Int. Ed. 44, 3122 (2005)

    Article  Google Scholar 

  51. D.R. Roy, R. Robles, S.N. Khanna, J. Chem. Phys. 132, 194305 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Kirilyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijk, C., Roy, D., Fielicke, A. et al. Structure investigation of CoxO +y (x=3–6, y=3–8) clusters by IR vibrational spectroscopy and DFT calculations. Eur. Phys. J. D 68, 357 (2014). https://doi.org/10.1140/epjd/e2014-50503-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50503-x

Keywords

Navigation