Skip to main content
Log in

Semi-classical calculations of ultracold and cold collisions with frequency-chirped light

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We conduct semi-classical Monte-Carlo simulations of ultracold collisions utilizing frequency-chirped laser light on a nanosecond timescale. Recent experiments demonstrated partial control of light-assisted collisional mechanisms with relatively slow chirp rates (10 GHz/μs). Collisions induced with positive chirped light enhance the inelastic collisional loss rate of atoms from a magneto-optical trap due to rapid adiabatic passage, whereas trap loss collisions can be coherently blocked when negative chirped light is used. Early quantum and classical simulations show that for negative chirps, the laser’s frequency continually interacts with the atom pair during the collision. We investigate how this process depends on the chirp rate and show that by moderately speeding up the chirp (>50 GHz/μs), we can significantly enhance coherent processes. We extend our semi-classical model to examine using pulse shaping as a means to coherently control collisions and show that features in the pulse shape should be on the order of or less than 1 ns. We also show that coherent control of collisions using this technique can be extended to temperatures exceeding 1 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Rice, M. Zhao, Optimal Control of Molecular Dynamics (Wiley, New York, 2000)

  2. M. Shapiro, P. Brumer, Principles of Quantum Control of Molecular Processes (Wiley, New York, 2003)

  3. C.P. Koch, M. Shapiro, Chem. Rev. 112, 4928 (2012)

    Article  Google Scholar 

  4. J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemller, Chem. Rev. 112, 4890 (2012)

    Article  Google Scholar 

  5. J.L. Carini, J.A. Pechkis, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 87, 011401 (2013)

    Article  ADS  Google Scholar 

  6. W. Salzmann et al., Phys. Rev. A 73, 023414 (2006)

    Article  ADS  Google Scholar 

  7. B.L. Brown, A.J. Dicks, I.A. Walmsley, Phys. Rev. Lett. 96, 173002 (2006)

    Article  ADS  Google Scholar 

  8. D.J. McCabe, D.G. England, H.E.L. Martay, M.E. Friedman, J. Petrovic, E. Dimova, B. Chatel, I.A. Walmsley, Phys. Rev. A 80, 033404 (2009)

    Article  ADS  Google Scholar 

  9. W. Salzmann et al., Phys. Rev. Lett. 100, 233003 (2008)

    Article  ADS  Google Scholar 

  10. U. Marvet, M. Dantus, Chem. Phys. Lett. 245, 393 (1995)

    Article  ADS  Google Scholar 

  11. L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C.P. Koch, Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)

    Article  ADS  Google Scholar 

  12. L. Rybak, Z. Amitay, S. Amaran, R. Kosloff, M. Tomza, R. Moszynski, C.P. Koch, Faraday Disc. 153, 383 (2011)

    Article  ADS  Google Scholar 

  13. M.J. Wright, S.D. Gensemer, J. Vala, R. Kosloff, P.L. Gould, Phys. Rev. Lett. 95, 063001 (2005)

    Article  ADS  Google Scholar 

  14. M.J. Wright, J.A. Pechkis, J.L. Carini, P.L. Gould, Phys. Rev. A 74, 063402 (2006)

    Article  ADS  Google Scholar 

  15. M.J. Wright, J.A. Pechkis, J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, Phys. Rev. A 75, 051401 (2007)

    Article  ADS  Google Scholar 

  16. J.A. Pechkis, J.L. Carini, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 83, 063403 (2011)

    Article  ADS  Google Scholar 

  17. K.A. Suominen, J. Phys. B 29, 5981 (1996)

    Article  ADS  Google Scholar 

  18. S.D. Gensemer, P.L. Gould, Phys. Rev. Lett. 80, 936 (1998)

    Article  ADS  Google Scholar 

  19. C. Orzel, S.D. Bergeson, S. Kulin, S.L. Rolston, Phys. Rev. Lett. 80, 5093 (1998)

    Article  ADS  Google Scholar 

  20. J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2000)

    Article  ADS  Google Scholar 

  21. J.L. Carini, J.A. Pechkis, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 85, 013424 (2012)

    Article  ADS  Google Scholar 

  22. E. Luc-Koenig, R. Kosloff, F. Masnou-Seeuws, M. Vatasescu, Phys. Rev. A 70, 033414 (2004)

    Article  ADS  Google Scholar 

  23. C.P. Koch, R. Kosloff, F. Masnou-Seeuws, Phys. Rev. A 73, 043409 (2006)

    Article  ADS  Google Scholar 

  24. E. Luc-Koenig, F. Masnou-Seeuws, R. Kosloff, Phys. Rev. A 76, 053415 (2007)

    Article  ADS  Google Scholar 

  25. S. Kallush, R. Kosloff, Phys. Rev. A 77, 023421 (2008)

    Article  ADS  Google Scholar 

  26. C.P. Koch, Phys. Rev. A 78, 063411 (2008)

    Article  ADS  Google Scholar 

  27. Y. Huang, W. Zhang, G.R. Wang, T. Xie, S.L. Cong, Phys. Rev. A 86, 043420 (2012)

    Article  ADS  Google Scholar 

  28. C.E. Rogers, M.J. Wright, J.L. Carini, J.A. Pechkis, P.L. Gould, J. Opt. Soc. Am. B 24, 1249 (2007)

    Article  ADS  Google Scholar 

  29. J. Bakos, G. Djotyan, P. Ignácz, M.Á. Kedves, B. Ráczkevi, Z. Sörlei, J. Szigeti, Opt. Lasers Eng. 47, 19 (2009)

    Article  Google Scholar 

  30. C.E. Rogers, J.L. Carini, J.A. Pechkis, P.L. Gould, Opt. Express 18, 1166 (2010)

    Article  Google Scholar 

  31. C.E. Rogers, J.L. Carini, J.A. Pechkis, P.L. Gould, Rev. Sci. Instrum. 82, 073107 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Wight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wight, M.J. Semi-classical calculations of ultracold and cold collisions with frequency-chirped light. Eur. Phys. J. D 69, 6 (2015). https://doi.org/10.1140/epjd/e2014-50433-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50433-7

Keywords

Navigation