Skip to main content
Log in

Competitive solvation of K+ by C6H6 and H2O in the K+-(C6H6)n-(H2O)m (n = 1–4; m = 1–6) aggregates

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The competitive solvation of the potassium ion by benzene and water is investigated at molecular level by means of Molecular Dynamics simulations on the K+-(C6H6) n -(H2O) m (n = 1–4; m = 1–6) ionic aggregates. The preference of K+ to bind C6H6 or H2O is investigated in the range of temperatures in which isomerisation processes are likely by adding water and benzene to the K+-(C6H6) n and K+-(H2O) m aggregates, respectively. Hydrogen bonds and the π-hydrogen bond, in spite of their weakness with respect to the K+-π and K+-H2O interactions, play an important role in stabilising different isomers, thus favouring isomerisation processes. Accordingly with experimental information it has been found that K+ bind preferably C6H6 rather than H2O and that the fragmentation of C6H6 is only observed for aggregates containing four molecules of benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Müller-Dethelfs, P. Hobza, Chem. Rev. 100, 143 (2000)

    Article  Google Scholar 

  2. J.L. Alonso, S. Antolínez, S. Bianco, A. Lesarri, J.C. López, W. Caminati, J. Am. Chem. Soc. 126, 3244 (2004)

    Article  Google Scholar 

  3. O.M. Cabarcos, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 108, 5151 (1998)

    Article  ADS  Google Scholar 

  4. O.M. Cabarcos, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 110, 8429 (1999)

    Article  ADS  Google Scholar 

  5. J.H. Morais-Cabral, Y. Zhou, R. MacKinnon, Nature 414, 37 (2001)

    Article  ADS  Google Scholar 

  6. T.D. Vaden, J.M. Lisy, J. Phys. Chem. A 109, 3880 (2005)

    Article  Google Scholar 

  7. R.A. Kumpf, D.A. Dougherty, Science 261, 1708 (1993)

    Article  ADS  Google Scholar 

  8. R. Sa, W. Zhu, J. Shen, Z. Gong, J. Cheng, K. Chen, H. Jiang, J. Phys. Chem. B 110, 5094 (2006)

    Article  Google Scholar 

  9. J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303 (1997)

    Article  Google Scholar 

  10. D.A. Dougherty, Science 271, 163 (1996)

    Article  ADS  Google Scholar 

  11. T.D. Vaden, J.M. Lisy, J. Chem. Phys. 123, 074302(1) (2005)

    Article  ADS  Google Scholar 

  12. C.J. Weinheimer, J.M. Lisy, Int. J. Mass Spectrom. Ion Process. 159, 197 (1996)

    Article  ADS  Google Scholar 

  13. D.J. Miller, J.M. Lisy, J. Chem. Phys. 124, 184301(1) (2006)

    Article  ADS  Google Scholar 

  14. S. Tsuzuki, M. Yoshida, T. Uchimaru, M. Mikami, J. Phys. Chem. A 105, 769 (2001)

    Article  Google Scholar 

  15. C. Felder, H.L. Jiang, W.L. Zhu, K.X. Chen, I. Silman, S.A. Botti, J.L. Sussman, J. Phys. Chem. A 105, 1326 (2001)

    Article  Google Scholar 

  16. S. Mecozzi, A.P. West, D.A. Dougherty, J. Am. Chem. Soc. 118, 2307 (1996)

    Article  Google Scholar 

  17. J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 4177 (1995)

    Article  Google Scholar 

  18. J.B. Nicholas, B.P. Hay, D.A. Dixon, J. Phys. Chem. A 103, 1394 (1999)

    Article  Google Scholar 

  19. D. Quiñonero, C. Garau, A. Frontera, P. Ballester, A. Costa, P.M. Deyà, J. Phys. Chem. A 109, 4632 (2005)

    Article  Google Scholar 

  20. A.F. Jalbout, L. Adamowicz, J. Chem. Phys. 116, 9672 (2002)

    Article  ADS  Google Scholar 

  21. F. Pirani, D. Cappelletti, G. Liuti, Chem. Phys. Lett. 350, 286 (2001)

    Article  ADS  Google Scholar 

  22. M. Albertí, A. Castro, A. Laganà, F. Pirani, M. Porrini, D. Cappelletti, Chem. Phys. Lett. 392, 514 (2004)

    Article  ADS  Google Scholar 

  23. M. Albertí, A. Castro, A. Laganà, M. Moix, F. Pirani, D. Cappelletti, G. Liuti, J. Phys. Chem. A 109, 2906 (2005)

    Article  Google Scholar 

  24. M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, Theor. Chem. Acc. 123, 21 (2009)

    Article  Google Scholar 

  25. M. Albertí, J. Phys. Chem. A 114, 2266 (2010)

    Article  Google Scholar 

  26. M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, D. Cappelletti, C. Coletti, N. Re, J. Phys. Chem. A 110, 9002 (2006)

    Article  Google Scholar 

  27. C. Coletti, N. Re, J. Phys. Chem. A 110, 6563 (2006)

    Article  Google Scholar 

  28. C. Coletti, N. Re, J. Phys. Chem. A 113, 1578 (2009)

    Article  Google Scholar 

  29. M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, C. Coletti, N. Re, J. Phys. Chem. A 113, 14606 (2009)

    Article  Google Scholar 

  30. G. Liuti, F. Pirani, Chem. Phys. Lett. 122, 245 (1985)

    Article  ADS  Google Scholar 

  31. F. Pirani, M. Albertí, A. Castro, M. Moix, D. Cappelletti, Chem. Phys. Lett. 394, 37 (2004)

    Article  ADS  Google Scholar 

  32. J.M.C. Marques, J.L. Llanio-Trujillo, M. Albertí, A. Aguilar, F. Pirani, J. Phys. Chem. A 116, 4947 (2012)

    Article  Google Scholar 

  33. M. Albertí, N. Faginas Lago, F. Pirani, Chem. Phys. 399, 232 (2012)

    Article  ADS  Google Scholar 

  34. M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, J. Phys. Chem. A 116, 5480 (2012)

    Article  Google Scholar 

  35. M. Albertí, N. Faginas Lago, J. Chem. Phys. A 116, 3094 (2012)

    Article  Google Scholar 

  36. P. Pirani, S. Brizi, L.F. Roncaratti, P. Casavecchia, D. Cappelletti, F. Vecchiocattivi, Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Article  Google Scholar 

  37. M. Albertí, A. Aguilar, D. Cappelletti, A. Laganà, F. Pirani, Int. J. Mass Spectrom. 280, 50 (2009)

    Article  ADS  Google Scholar 

  38. R. Cambi, D. Cappelletti, G. Liuti, F. Pirani, J. Chem. Phys. 95, 1852 (1991)

    Article  ADS  Google Scholar 

  39. G.C. Maitland, E.B. Smith, Chem. Phys. Lett. 22, 443 (1973)

    ADS  Google Scholar 

  40. T.A. Halgren, J. Am. Chem. Soc. 114, 7827 (1992)

    Article  Google Scholar 

  41. M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, J. Phys. Chem. A 114, 11964 (2010)

    Article  Google Scholar 

  42. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2005), http://webbook.nist.gov (retrieved February 25, 2013)

  43. T.D. Vaden, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 121, 3102 (2004)

    Article  ADS  Google Scholar 

  44. T.D. Vaden, J.M. Lisy, J. Chem. Phys. 124, 214315(1) (2006)

    Article  ADS  Google Scholar 

  45. M. Albertí, A. Aguilar, M. Bartolomei, D. Cappelletti, A. Laganà, J.M. Lucas, F. Pirani, Phys. Scr. 78, 058108 (2008)

    Article  ADS  Google Scholar 

  46. N. Ohtomo, K. Arakawa, Bull. Chem. Soc. Jpn 53, 1789 (1980)

    Article  Google Scholar 

  47. G.W. Neilson, N.T. Skippe, Chem. Phys. Lett. 114, 35 (1985)

    Article  ADS  Google Scholar 

  48. T.T. Ikeda, M. Boero, K. Terakura, J. Chem. Phys. 126, 034501 (2007)

    Article  ADS  Google Scholar 

  49. S.A. Clough, Y. Beers, G.P. Klein, L.S. Rothman, J. Chem. Phys. 59, 2254 (1973)

    Article  ADS  Google Scholar 

  50. M. Carrillo-Tripp, H. Saint-Martin, I. Ortega-Blake, J. Chem. Phys. 118, 7062 (2003) and references therein

    Article  ADS  Google Scholar 

  51. H.M. Lee, J. Kim, S. Lee, B. Mhin, K.S. Kim, J. Chem. Phys. 111, 3995 (1999)

    Article  ADS  Google Scholar 

  52. J. Mähler, I. Persson, Inorg. Chem. 51, 425 (2012) and references therein

    Article  Google Scholar 

  53. F. Schulz, B. Hartke, Chem. Phys. Chem. 3, 98 (2002)

    Article  Google Scholar 

  54. J.L. Llanio-Trujillo, J.M.C. Marques, F.B. Pereira, J. Phys. Chem. A 115, 2130 (2011)

    Article  Google Scholar 

  55. M. Albertí, N. Faginas Lago, A. Laganà, F. Pirani, Phys. Chem. Chem. Phys. 13, 8422 (2011)

    Article  Google Scholar 

  56. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  57. J. Sunner, K. Nishizawa, P. Kebarle, J. Phys. Chem. 85, 1814 (1981)

    Article  Google Scholar 

  58. S.F. Boys, R. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  59. J.C. Amicangelo, P.B. Armentrout, J. Phys. Chem. A 104, 11420 (2000)

    Article  Google Scholar 

  60. J.C. Amicangelo, P.B. Armentrout, Int. J. Mass Spectrom. 212, 301 (2001)

    Article  Google Scholar 

  61. M. Paolantoni, N. Faginas Lago, M. Albertí, A. Laganà, J. Phys. Chem. A 113, 15100 (2009)

    Article  Google Scholar 

  62. N. Faginas Lago, F. Huarte Larrañaga, M. Albertí, Eur. Phys. J. D 55, 75 (2009)

    Article  ADS  Google Scholar 

  63. M. Albertí, A. Aguilar, J.M. Lucas, A. Laganà, F. Pirani, J. Phys. Chem. A 111, 1780 (2007)

    Article  Google Scholar 

  64. F. Huarte-Larragaña, A. Aguilar, J.M. Lucas, M. Albertí, J. Phys. Chem. A 111, 8072 (2007)

    Article  Google Scholar 

  65. S. Suzuki, P.G. Green, R.E. Bumgarner, S. Dasgupta, W.A. Godard III, G.A. Blake, Science 257, 942 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Faginas Lago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertí, M., Lago, N. Competitive solvation of K+ by C6H6 and H2O in the K+-(C6H6)n-(H2O)m (n = 1–4; m = 1–6) aggregates. Eur. Phys. J. D 67, 73 (2013). https://doi.org/10.1140/epjd/e2013-30753-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30753-x

Keywords

Navigation