Skip to main content
Log in

Density functional theory molecular dynamics study of the Au25(SR) 18 cluster

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The experimental structure of the Au25(SR) 18 cluster has been previously accurately determined. However, it’s thermodynamical behaviour is not well studied. We performed molecular dynamics simulations of 10 ps duration on the model cluster Au25(SH) 18 to gain information about the thermodynamical behaviour and stability of the cluster at temperatures between 300 K and 600 K. Our results suggest that the gold-sulfur bonds at the core-thiolate interface are the weakest ones in the system. However, the interface remains well defined during the simulations. The most significant structural changes take place in the gold core, where the ground state gold-gold bond length profile is completely changed by the thermal vibrations. The thermal movement does not affect the electronic structure notably. The HOMO and LUMO states broaden and the HOMO-LUMO gap narrows as a function of temperature, but the superatom electronic structure can be seen at all the temperatures clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Häkkinen, Nat. Chem. 4, 443 (2012)

    Article  Google Scholar 

  2. H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008)

    Article  Google Scholar 

  3. J.F. Parker, C.A. Fields-Zinna, R.W. Murray, Acc. Chem. Res. 43, 1289 (2010)

    Article  Google Scholar 

  4. A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H. Muhammed, T. Pradeep, S. Nair, M. Koyakutty, Nanotechnology 21, 055103 (2010)

    Article  ADS  Google Scholar 

  5. Y. Zhu, H.F. Qian, B.A. Drake, R.C. Jin, Angew. Chem. 49, 1295 (2010)

    Article  Google Scholar 

  6. M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray, J. Am. Chem. Soc. 130, 3754 (2008)

    Article  Google Scholar 

  7. M.Z. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R.C. Jin, J. Am. Chem. Soc. 130, 5883 (2008)

    Article  Google Scholar 

  8. M.Z. Zhu, W.T. Eckenhoff, T. Pintauer, R.C. Jin, J. Phys. Chem. C 112, 14221 (2008)

    Article  Google Scholar 

  9. H.F. Qian, W.T. Eckenhoff, Y. Zhu, T. Pintauer, R.C. Jin, J. Am. Chem. Soc. 132, 8280 (2010)

    Article  Google Scholar 

  10. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007)

    Article  ADS  Google Scholar 

  11. J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, J. Am. Chem. Soc. 130, 3756 (2008)

    Article  Google Scholar 

  12. C.M. Aikens, J. Phys. Chem. A 113, 10811 (2009)

    Article  Google Scholar 

  13. O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C.M. Aikens, J. Am. Chem. Soc. 132, 8210 (2010)

    Article  Google Scholar 

  14. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 9157 (2008)

    Article  ADS  Google Scholar 

  15. O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, J. Phys. Chem. C 113, 5035 (2009)

    Article  Google Scholar 

  16. M.Z. Zhu, H.F. Qian, R.C. Jin, J. Am. Chem. Soc. 131, 7220 (2009)

    Article  Google Scholar 

  17. H.F. Qian, Y. Zhu, R.C. Jin, J. Am. Chem. Soc. 132, 4583 (2010)

    Article  Google Scholar 

  18. A. Dass, J. Am. Chem. Soc. 131, 11666 (2009)

    Article  Google Scholar 

  19. A. Dass, J. Am. Chem. Soc. 133, 19259 (2011)

    Article  Google Scholar 

  20. Y. Negishi, Y. Tagasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, J. Am. Chem. Soc. 126, 6518 (2004)

    Article  Google Scholar 

  21. S.R. Bahn, K.W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002)

    Article  Google Scholar 

  22. J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)

    Article  ADS  Google Scholar 

  23. J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)

    Article  ADS  Google Scholar 

  24. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  25. A.H. Larsen, M. Vanin, J.J. Mortensen, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 80, 195112 (2009)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. M.A. MacDonald, D.M. Chevrier, P. Zhang, H.F. Qian, R.C. Jin, J. Phys. Chem. C 115, 15282 (2011)

    Article  Google Scholar 

  28. W.D. Knight, K. Clemenger, W. De Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  29. W. De Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mäkinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäkinen, V., Häkkinen, H. Density functional theory molecular dynamics study of the Au25(SR) 18 cluster. Eur. Phys. J. D 66, 310 (2012). https://doi.org/10.1140/epjd/e2012-30485-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30485-5

Keywords

Navigation