Skip to main content

Advertisement

Log in

Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming

  • Topical issue: 23rd Symposium on Plasma Physics and Technology
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, results of hydrogen production via methane pyrolysis in the atmospheric pressure microwave plasma with CH4 swirl are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. The plasma generation was stabilized by a CH4 swirl having a flow rate of 87.5 L min-1. The absorbed microwave power was 1.5–5 kW. The hydrogen production rate and the corresponding energy efficiency were 866 g (H2) h-1 and 577 g (H2) kWh-1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • G. Petitpas, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri, Int. J. Hydrogen Energy 32, 2848 (2007)

    Google Scholar 

  • L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, A. Samokhin, R. Ramprasad, S. Tamhankar, Int. J. Hydrogen Energy 25, 1157 (2000)

    Google Scholar 

  • L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, Int. J. Hydrogen Energy 24, 1131 (1999)

    Google Scholar 

  • J.M. Cormie, I. Rusu, J. Phys. D: Appl. Phys. 34, 2798 (2001)

    Google Scholar 

  • N. Reveau, M. Nikravech, O. Martinie, P. Lefaucheux, J.M. Cormier, in Proc. HAKONE VII, Greifswald, Germany, 2000, pp. 252–256

  • A. Czernichowski, M. Czernichowski, P. Czernichowski, in Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 578

  • H. Sekiguchi, Y. Mori, Thin Solid Films 435, 44 (2003)

    Google Scholar 

  • H. Sekiguchi, S. Nakanishi, K. Fukuda, H. Inagaki, in Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 598

  • T. Kappes, W. Schiene, T. Hammer, in Proc. 8th Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Puhajarve, Estonia, 2002, pp. 196–200

  • H. Kabashima, H. Einaga, S. Futamura, IEEE Trans. Ind. Appl. 39, 340 (2003)

    Google Scholar 

  • S. Futamura, H. Kabashima, L. Ma, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 211–215

  • B. Pietruszka, K. Anklam, M. Heintze, Appl. Catal. A 261, 19 (2004)

    Google Scholar 

  • M. Heintze, B. Pietruszka, Catal. Today 89, 21 (2004)

    Google Scholar 

  • B. Pietruszka, K. Anklam, M. Heintze, in 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 582

  • O. Mutaf-Yardimci, A.V. Saveliev, A.A. Fridman, L.A. Kennedy, Int. J. Hydrogen Energy 23, 1109 (1998)

    Google Scholar 

  • J.S. Chang, Y. Uchida, M. Ara, J.T. Kim, K. Urashima, J.F. Kelly, M. Stanciulescu, R. Burisch, J.P. Charland, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 216–220

  • T. Kappes, T. Hammer, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 206–210

  • M. Deminsky, V. Jivotov, B. Potapkin, V. Rusanov, Pure Appl. Chem. 74, 413 (2002)

    Google Scholar 

  • M. Jasiński, M. Dors, J. Mizeraczyk, J. Power Sources 181, 41 (2008)

    Google Scholar 

  • M. Moisan, G. Sauve, Z. Zakrzewski, J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994)

    Google Scholar 

  • M. Moisan, Z. Zakrzewski, J.C. Rostaining, Plasma Sources Sci. Technol. 10, 387 (2001)

    Google Scholar 

  • M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, Czech. J. Phys. 52, 421 (2002)

    Google Scholar 

  • M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo, J.S. Chang, J. Phys. D: Appl. Phys. 35, 2274 (2002)

    Google Scholar 

  • M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, J. Adv. Oxid. Technol. 7, 51 (2004)

    Google Scholar 

  • J. Mizeraczyk, M. Jasiński, Z. Zakrzewski, Plasma Phys. Contr. Fusion 47, 589 (2005)

    Google Scholar 

  • K.M. Green, M.C. Borras, P.P. Woskow, G.J. Flores, K. Hadidi, P. Thomas, IEEE Trans. Plasma Sci. 29, 399 (2001)

    Google Scholar 

  • H.S. Uhm, Y.C. Hong, D.H. Shin, Plasma Sources Sci. Technol. 15, S26 (2006)

  • P.L. Spath, M.K. Mann, National Renewable Energy Laboratory Technical, Report, 2001, NREL/TP-570-27637

  • http://www.loim.vrn.ru/ index.php?m=63&page=58& nm=74&p=.2.3.56.64.70.71.72.73.74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasiński, M., Dors, M. & Mizeraczyk, J. Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming. Eur. Phys. J. D 54, 179–183 (2009). https://doi.org/10.1140/epjd/e2008-00221-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00221-1

PACS

Navigation