Skip to main content
Log in

Decoupling of the DGLAP evolution equations at next-to-next-to-leading order (NNLO) at low-x

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a set of formulas to extract two second-order independent differential equations for the gluon and singlet distribution functions. Our results extend from the LO up to NNLO DGLAP evolution equations with respect to the hard-Pomeron behavior at low-x. In this approach, both singlet quarks and gluons have the same high-energy behavior at low-x. We solve the independent DGLAP evolution equations for the functions \(F_{2}^{s}(x,Q^{2})\) and G(x,Q 2) as a function of their initial parameterization at the starting scale \(Q_{0}^{2}\). The results not only give striking support to the hard-Pomeron description of the low-x behavior, but give a rather clean test of perturbative QCD showing an increase of the gluon distribution and singlet structure functions as x decreases. We compared our numerical results with the published BDM (Block et al. Phys. Rev. D 77:094003 (2008)) gluon and singlet distributions, starting from their initial values at \(Q_{0}^{2}=1\ \mathrm{GeV}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yu.L. Dokshitzer, Sov. Phys. JETP 6, 641 (1977)

    ADS  Google Scholar 

  2. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1997)

    Article  ADS  Google Scholar 

  3. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  4. L.F. Abbott, W.B. Atwood, A.M. Barnett, Phys. Rev. D 22, 582 (1980)

    Article  ADS  Google Scholar 

  5. A.M. Cooper-Sarkar, R.C.E. Devenish, A. DeRoeck, Int. J. Mod. Phys. A 13, 3385 (1998)

    Article  ADS  Google Scholar 

  6. M. Cluck, E. Reya, A. Vogt, Z. Phys. C 48, 471 (1990)

    Article  Google Scholar 

  7. A.D. Martin, W.J. Stirling, R.S. Thorne, Phys. Lett. B 636, 259 (2006)

    Article  ADS  Google Scholar 

  8. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  9. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, arXiv:1301.6754 [hep-ph]

  10. M. Gluck, P. Jimenez-Delgado, E. Reya, Eur. Phys. J. C 53, 355 (2008)

    Article  ADS  Google Scholar 

  11. M. Gluck, P. Jimenez-Delgado, E. Reya, Phys. Rev. D 79, 074023 (2009)

    Article  ADS  Google Scholar 

  12. K. Prytz, Phys. Lett. B 311, 286 (1993)

    Article  ADS  Google Scholar 

  13. K. Prytz, Phys. Lett. B 332, 393 (1994)

    Article  ADS  Google Scholar 

  14. M.B.G. Ducati, V.P.B. Goncalves, Phys. Lett. B 390, 401 (1997)

    Article  ADS  Google Scholar 

  15. A.V. Kotikov, G. Parente, Phys. Lett. B 379, 195 (1996)

    Article  ADS  Google Scholar 

  16. P. Desgrolard, A. Lengyel, E. Martynov, J. High Energy Phys. 02, 029 (2002)

    Article  ADS  Google Scholar 

  17. A. Donnachie, P.V. Landshoff, Phys. Lett. B 533, 277 (2002)

    Article  ADS  Google Scholar 

  18. J.R. Cudell, A. Donnachie, P.V. Landshoff, Phys. Lett. B 448, 281 (1999)

    Article  ADS  Google Scholar 

  19. J. Kwiecinski, arXiv:hep-ph/9607221 (1996)

  20. P.D. Collins, An Introduction to Regge Theory an High-Energy Physics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  21. M. Bertini et al., Riv. Nuovo Cimento 19, 1 (1996)

    MathSciNet  Google Scholar 

  22. A. Donnachie, P.V. Landshoff, Z. Phys. C 61, 139 (1994)

    Article  ADS  Google Scholar 

  23. A. Donnachie, P.V. Landshoff, Phys. Lett. B 518, 63 (2001)

    Article  ADS  Google Scholar 

  24. A. Donnachie, P.V. Landshoff, Phys. Lett. B 550, 160 (2002)

    Article  ADS  Google Scholar 

  25. R.D. Ball, P.V. Landshoff, arXiv:hep-ph/9912445

  26. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  27. W. Furmanski, R. Petronzio, Phys. Lett. B 97, 437 (1980)

    Article  ADS  Google Scholar 

  28. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  29. W.L. van Neerven, A. Vogt, Nucl. Phys. B 588, 345 (2000)

    Article  ADS  Google Scholar 

  30. W.L. van Neerven, A. Vogt, Nucl. Phys. B 568, 263 (2000)

    Article  ADS  Google Scholar 

  31. S. Moch, J. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. Moch, J. Vermaseren, A. Vogt, Nucl. Phys. B 691, 129 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A. Retey, J. Vermaseren, Nucl. Phys. B 604, 281 (2001)

    Article  ADS  Google Scholar 

  34. M.M. Block, L. Durand, D.W. Mckay, Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  35. E.L. Berger, M.M. Block, C.-I. Tan, Phys. Rev. Lett. 98, 242001 (2007)

    Article  ADS  Google Scholar 

  36. V. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 21, 443 (2001)

    Article  ADS  Google Scholar 

  37. M. Devee, B. Baishya, J.K. Sarma, Eur. Phys. J. C 72, 2036 (2012)

    Article  ADS  Google Scholar 

  38. S. Weinzierl, arXiv:hep-ph/0203112

  39. M.M. Block, L. Durand, P. Ha, D.W. Mckay, arXiv:1004.1440 [hep-ph] (2010)

  40. M.M. Block, L. Durand, P. Ha, D.W. Mckay, arXiv:1005.2556 [hep-ph] (2010)

  41. G.R. Boroun, J. Exp. Theor. Phys. 106, 700 (2008)

    Article  ADS  Google Scholar 

  42. B. Rezaei, G.R. Boroun, J. Exp. Theor. Phys. 112, 381 (2011)

    Article  ADS  Google Scholar 

  43. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)

    Article  ADS  Google Scholar 

  44. W.L. van Neerven, E.B. Zijlstra, Phys. Lett. B 272, 127 (1991)

    Article  ADS  Google Scholar 

  45. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 273, 476 (1991)

    Article  ADS  Google Scholar 

  46. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 297, 377 (1992)

    Article  ADS  Google Scholar 

  47. E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 383, 525 (1992)

    Google Scholar 

  48. R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359, 343 (1991)

    Article  ADS  Google Scholar 

  49. R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 644, 403 (2002), Erratum

    Article  ADS  Google Scholar 

  50. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002). hep-ph/0201206

    Article  ADS  Google Scholar 

  51. B.G. Shaikhatdenov, A.V. Kotikov, V.G. Krivokhizhin, G. Parente, Phys. Rev. D 81, 034008 (2010)

    Article  ADS  Google Scholar 

  52. A. Donnachie, P.V. Landshoff, Phys. Lett. B 296, 257 (1992)

    ADS  Google Scholar 

  53. P. Desgrolard, M. Giffon, E. Martynov, E. Predazzi, Eur. Phys. J. C 18, 555 (2001)

    Article  ADS  Google Scholar 

  54. P. Desgrolard, M. Giffon, E. Martynov, Eur. Phys. J. C 7, 655 (1999)

    Article  ADS  Google Scholar 

  55. A.D. Martin, M.G. Ryskin, G. Watt, arXiv:hep-ph/0406225

  56. F.D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1579 (2011)

    Article  ADS  Google Scholar 

  57. C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 21, 33 (2001)

    Article  ADS  Google Scholar 

  58. R.G. Roberts, The Structure of the Proton (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  59. B. Lampe, E. Reya, Phys. Rep. 332, 1 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.R. Boroun would like to thank the anonymous referee of the paper for his/her careful reading of the manuscript and for the productive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Appendices

Appendix A

The explicit forms of the functions a(x), b(x), c(x) and d(x) are

(18)

Here the splitting functions are given by [20, 21, 58]

(19)

with C A =N c =3, \(C_{F}=\frac{N_{c}^{2}-1}{2N_{c}}=\frac{4}{3}\) and \(T_{f}=\frac{1}{2}N_{f}\). The convolution integrals in (18) which contains plus prescription, ()+, can be easily calculated by [59]

(20)

Appendix B

The explicit forms of the functions M(x,t),N(x,t),P(x,t) and Q(x,t) are

(21)

where the strong coupling constant, α s , up to NNLO is given by Eqs. (6)–(7). The explicit forms of the second- and third-order splitting functions are, respectively [3133],

(22)

where

(23)

and

(24)

where L0=ln(z), L1=ln(1−z) and D0=1/(1−z).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boroun, G.R., Rezaei, B. Decoupling of the DGLAP evolution equations at next-to-next-to-leading order (NNLO) at low-x . Eur. Phys. J. C 73, 2412 (2013). https://doi.org/10.1140/epjc/s10052-013-2412-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2412-z

Keywords

Navigation