Skip to main content
Log in

Nucleon form factors, generalized parton distributions and quark angular momentum

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji’s sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be \(J_{v}^{u} = 0.230^{+ 0.009}_{- 0.024}\) and \(J_{v}^{d} = -0.004^{+ 0.010}_{- 0.016}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. We emphasize that ϕ(1020) and its excited states are necessary to obtain a proper large t behavior of the strangeness form factors. This sheds doubt on analyses that obtain the dipole behavior of isosinglet form factors (\(G_{M}^{p} + G_{M}^{n\phantom{p}}\), \(G_{E}^{p} + G_{E}^{n\phantom{p}}\) or \(F_{1}^{p} + F_{1}^{n}\)) by a conspiracy of ω and ϕ exchange without excited states. See also our discussion in Sect. 3.1 of [71].

  2. If one does not wish to neglect these contributions, one can simply re-interpret the form factors \(F_{i}^{u}\) and \(F_{i}^{d}\) of this section as \(F_{i}^{u-s}\) and \(F_{i}^{d-s}\), as discussed in Sect. 2.

  3. Strictly speaking, the values of R p are not independent of the results for \(G_{M}^{p}\) in the global analysis [9], because that analysis used several of the R p measurements contained in our data set. Since we have no possibility to take this correlation into account, we treat the data for R p and \(G_{M}^{p}\) as uncorrelated.

  4. It is common to write the arguments of the double distribution as k(β,α,t). We changed notation here because α and β are already used otherwise.

  5. In general, the integration extends over −1<ρ<1 and |ρ|−1<η<1−|ρ|. Its restriction to ρ>0 for valence quarks has been proposed in [119].

References

  1. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001). hep-ph/0106012

    Article  ADS  Google Scholar 

  2. M. Diehl, Phys. Rep. 388, 41 (2003). hep-ph/0307382

    Article  ADS  Google Scholar 

  3. A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005). hep-ph/0504030

    Article  ADS  Google Scholar 

  4. S. Boffi, B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007). arXiv:0711.2625

    Google Scholar 

  5. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, Eur. Phys. J. C 39, 1 (2005). hep-ph/0408173

    Article  ADS  Google Scholar 

  6. J.J. Kelly, Phys. Rev. C 66, 065203 (2002). hep-ph/0204239

    Article  ADS  Google Scholar 

  7. H. Gao, nucl-ex/0411015

  8. J. Friedrich, T. Walcher, Eur. Phys. J. A 17, 607 (2003). hep-ph/0303054

    Article  ADS  Google Scholar 

  9. J. Arrington, W. Melnitchouk, J.A. Tjon, Phys. Rev. C 76, 035205 (2007). arXiv:0707.1861

    Article  ADS  Google Scholar 

  10. B.D. Milbrath et al. (Bates FPP Collaboration), Phys. Rev. Lett. 80, 452 (1998) [Erratum-ibid. 82, 2221 (1999)]. nucl-ex/9712006

    Article  ADS  Google Scholar 

  11. T. Pospischil et al. (A1 Collaboration), Eur. Phys. J. A 12, 125 (2001)

    Article  ADS  Google Scholar 

  12. O. Gayou et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. C 64, 038202 (2001)

    Article  ADS  Google Scholar 

  13. O. Gayou et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 88, 092301 (2002). nucl-ex/0111010

    Article  ADS  Google Scholar 

  14. V. Punjabi, et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. C 71, 055202 (2005) [Erratum-ibid. C 71, 069902 (2005)]. nucl-ex/0501018

    Article  ADS  Google Scholar 

  15. G. MacLachlan et al., Nucl. Phys. A 764, 261 (2006)

    Article  ADS  Google Scholar 

  16. A.J.R. Puckett et al., Phys. Rev. Lett. 104, 242301 (2010). arXiv:1005.3419

    Article  ADS  Google Scholar 

  17. M. Paolone et al., Phys. Rev. Lett. 105, 072001 (2010). arXiv:1002.2188

    Article  ADS  Google Scholar 

  18. G. Ron et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. C 84, 055204 (2011). arXiv:1103.5784

    Article  ADS  Google Scholar 

  19. X. Zhan et al., Phys. Lett. B 705, 59 (2011). arXiv:1102.0318

    Article  ADS  Google Scholar 

  20. H. Anklin et al., Phys. Lett. B 428, 248 (1998)

    Article  ADS  Google Scholar 

  21. G. Kubon et al., Phys. Lett. B 524, 26 (2002). nucl-ex/0107016

    Article  ADS  Google Scholar 

  22. H. Anklin et al., Phys. Lett. B 336, 313 (1994)

    Article  ADS  Google Scholar 

  23. J. Lachniet et al. (CLAS Collaboration), Phys. Rev. Lett. 102, 192001 (2009). arXiv:0811.1716

    Article  ADS  Google Scholar 

  24. B. Anderson et al. (Jefferson Lab E95-001 Collaboration), Phys. Rev. C 75, 034003 (2007). nucl-ex/0605006

    Article  ADS  Google Scholar 

  25. C. Herberg et al., Eur. Phys. J. A 5, 131 (1999)

    Article  ADS  Google Scholar 

  26. D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005). nucl-ex/0410026

    Article  ADS  Google Scholar 

  27. B. Plaster et al. (Jefferson Lab E93-038 Collaboration), Phys. Rev. C 73, 025205 (2006). nucl-ex/0511025

    Article  ADS  Google Scholar 

  28. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999). nucl-ex/9907012

    Article  ADS  Google Scholar 

  29. H. Zhu et al. (Jefferson Lab E93-026 Collaboration), Phys. Rev. Lett. 87, 081801 (2001). nucl-ex/0105001

    Article  ADS  Google Scholar 

  30. G. Warren et al. (Jefferson Lab E93-026 Collaboration), Phys. Rev. Lett. 92, 042301 (2004). nucl-ex/0308021

    Article  ADS  Google Scholar 

  31. E. Geis et al. (BLAST Collaboration), Phys. Rev. Lett. 101, 042501 (2008). arXiv:0803.3827

    Article  ADS  Google Scholar 

  32. J. Bermuth et al., Phys. Lett. B 564, 199 (2003). nucl-ex/0303015

    Article  ADS  Google Scholar 

  33. D. Rohe, private communication (2005)

  34. S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010). arXiv:1008.1738

    Article  ADS  Google Scholar 

  35. R. Schiavilla, I. Sick, Phys. Rev. C 64, 041002 (2001). nucl-ex/0107004

    Article  ADS  Google Scholar 

  36. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  37. P.A.M. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003). hep-ph/0306007

    Article  ADS  Google Scholar 

  38. J. Arrington, P.G. Blunden, W. Melnitchouk, Prog. Part. Nucl. Phys. 66, 782 (2011). arXiv:1105.0951

    Article  ADS  Google Scholar 

  39. J. Arrington, Phys. Rev. C 71, 015202 (2005). hep-ph/0408261

    Article  ADS  Google Scholar 

  40. W.M. Alberico, S.M. Bilenky, C. Giunti, K.M. Graczyk, Phys. Rev. C 79, 065204 (2009). arXiv:0812.3539

    Article  ADS  Google Scholar 

  41. I.A. Qattan, A. Alsaad, J. Arrington, Phys. Rev. C 84, 054317 (2011). arXiv:1109.1441

    Article  ADS  Google Scholar 

  42. I.A. Qattan, J. Arrington, arXiv:1209.0683

  43. G. Ron et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 99, 202002 (2007). arXiv:0706.0128

    Article  ADS  Google Scholar 

  44. M.K. Jones et al. (Resonance Spin Structure Collaboration), Phys. Rev. C 74, 035201 (2006). nucl-ex/0606015

    Article  ADS  Google Scholar 

  45. C.B. Crawford et al., Phys. Rev. Lett. 98, 052301 (2007). nucl-ex/0609007

    Article  ADS  Google Scholar 

  46. W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000). nucl-ex/0008003

    Article  ADS  Google Scholar 

  47. W. Xu et al. (Jefferson Lab E95-001 Collaboration), Phys. Rev. C 67, 012201 (2003). nucl-ex/0208007

    Article  ADS  Google Scholar 

  48. H. Gao, Nucl. Phys. A 631, 170 (1998)

    Article  ADS  Google Scholar 

  49. H. Gao et al., Phys. Rev. C 50, 546 (1994)

    Article  ADS  Google Scholar 

  50. J.J. Kelly, Phys. Rev. C 70, 068202 (2004)

    Article  ADS  Google Scholar 

  51. M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999)

    Article  ADS  Google Scholar 

  52. R. Madey et al. (Jefferson Lab E93-038 Collaboration), Phys. Rev. Lett. 91, 122002 (2003). nucl-ex/0308007

    Article  ADS  Google Scholar 

  53. D. Rohe et al., Phys. Rev. Lett. 83, 4257 (1999)

    Article  ADS  Google Scholar 

  54. J. Becker et al., Eur. Phys. J. A 6, 329 (1999)

    Article  ADS  Google Scholar 

  55. J. Golak, G. Ziemer, H. Kamada, H. Witała, W. Glöckle, Phys. Rev. C 63, 034006 (2001). nucl-th/0008008

    Article  ADS  Google Scholar 

  56. F.E. Maas et al. (A4 Collaboration), Phys. Rev. Lett. 93, 022002 (2004). nucl-ex/0401019

    Article  ADS  Google Scholar 

  57. K.A. Aniol et al. (HAPPEX Collaboration), Phys. Rev. C 69, 065501 (2004). nucl-ex/0402004

    Article  ADS  Google Scholar 

  58. F.E. Maas et al. (A4 Collaboration), Phys. Rev. Lett. 94, 152001 (2005). nucl-ex/0412030

    Article  ADS  Google Scholar 

  59. K.A. Aniol et al. (HAPPEX Collaboration), Phys. Rev. Lett. 96, 022003 (2006). nucl-ex/0506010

    Article  ADS  Google Scholar 

  60. K.A. Aniol et al. (HAPPEX Collaboration), Phys. Lett. B 635, 275 (2006). nucl-ex/0506011

    Article  ADS  Google Scholar 

  61. A. Acha et al. (HAPPEX Collaboration), Phys. Rev. Lett. 98, 032301 (2007). nucl-ex/0609002

    Article  ADS  Google Scholar 

  62. S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009). arXiv:0903.2733

    Article  ADS  Google Scholar 

  63. D. Androić et al. (G0 Collaboration), Phys. Rev. Lett. 104, 012001 (2010). arXiv:0909.5107

    Article  ADS  Google Scholar 

  64. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002

    Article  ADS  Google Scholar 

  65. R.D. Ball et al. (NNPDF Collaboration), Nucl. Phys. B 855, 608 (2012). arXiv:1108.1758

    Article  ADS  Google Scholar 

  66. D.B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2005). hep-lat/0406002

    Article  ADS  Google Scholar 

  67. D.B. Leinweber et al., Phys. Rev. Lett. 97, 022001 (2006). hep-lat/0601025

    Article  ADS  Google Scholar 

  68. H.-W. Lin, arXiv:0707.3844

  69. P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. C 79, 065202 (2009). arXiv:0807.0944

    Article  ADS  Google Scholar 

  70. T. Doi et al., Phys. Rev. D 80, 094503 (2009). arXiv:0903.3232

    Article  MathSciNet  ADS  Google Scholar 

  71. M. Diehl, T. Feldmann, P. Kroll, Phys. Rev. D 77, 033006 (2008). arXiv:0711.4304

    Article  ADS  Google Scholar 

  72. H. Dahiya, M. Gupta, Phys. Rev. D 78, 014001 (2008). arXiv:0806.0692

    Article  ADS  Google Scholar 

  73. A. Kiswandhi, H.C. Lee, S.N. Yang, Phys. Lett. B 704, 373 (2011). arXiv:1107.3072

    Article  ADS  Google Scholar 

  74. D.O. Riska, B.S. Zou, AIP Conf. Proc. 842, 303 (2006)

    Article  ADS  Google Scholar 

  75. W. Grein, P. Kroll, Nucl. Phys. A 338, 332 (1980)

    Article  ADS  Google Scholar 

  76. P. Kroll, AIP Conf. Proc. 904, 76 (2007). hep-ph/0612026

    Article  ADS  Google Scholar 

  77. P. Kroll, arXiv:0710.2771

  78. G.D. Cates, C.W. de Jager, S. Riordan, B. Wojtsekhowski, Phys. Rev. Lett. 106, 252003 (2011). arXiv:1103.1808

    Article  ADS  Google Scholar 

  79. M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003). hep-ph/0207047

    Article  ADS  MATH  Google Scholar 

  80. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 80, 034030 (2009). arXiv:0904.3821

    Article  ADS  Google Scholar 

  81. M. Burkardt, Phys. Lett. B 582, 151 (2004). hep-ph/0309116

    Article  ADS  Google Scholar 

  82. http://lhapdf.hepforge.org

  83. S. Alekhin, J. Blümlein, S. Moch, Phys. Rev. D 86, 054009 (2012). arXiv:1202.2281

    Article  ADS  Google Scholar 

  84. H.L. Lai et al., Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241

    Article  ADS  Google Scholar 

  85. M. Glück, P. Jimenez-Delgado, E. Reya, Eur. Phys. J. C 53, 355 (2008). arXiv:0709.0614

    Article  ADS  Google Scholar 

  86. https://www.desy.de/h1zeus/combined_results/herapdftable

  87. J. Pumplin et al., J. High Energy Phys. 0207, 012 (2002). hep-ph/0201195

    Article  ADS  Google Scholar 

  88. J.C. Bernauer et al. (A1 Collaboration), Phys. Rev. Lett. 105, 242001 (2010). arXiv:1007.5076

    Article  ADS  Google Scholar 

  89. R. Pohl, R. Gilman, G.A. Miller, K. Pachucki, arXiv:1301.0905

  90. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  91. S.D. Drell, T.M. Yan, Phys. Rev. Lett. 24, 181 (1970)

    Article  ADS  Google Scholar 

  92. J.D. Bratt et al. (LHPC Collaboration), Phys. Rev. D 82, 094502 (2010). arXiv:1001.3620

    Article  ADS  Google Scholar 

  93. Ph. Hägler, Phys. Rep. 490, 49 (2010). arXiv:0912.5483

    Article  MathSciNet  ADS  Google Scholar 

  94. G.S. Bali et al., Phys. Rev. D 86, 054504 (2012). arXiv:1207.1110

    Article  ADS  Google Scholar 

  95. J.R. Green et al., arXiv:1209.1687

  96. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997). hep-ph/9603249

    Article  ADS  Google Scholar 

  97. A. Bacchetta, M. Radici, Phys. Rev. Lett. 107, 212001 (2011). arXiv:1107.5755

    Article  ADS  Google Scholar 

  98. A. Bacchetta, M. Radici, PoS QNP 2012, 041 (2012). arXiv:1206.2565

    Google Scholar 

  99. R.L. Jaffe, hep-ph/9602236

  100. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 53, 367 (2008). arXiv:0708.3569

    Article  ADS  Google Scholar 

  101. V. Bernard, L. Elouadrhiri, U.G. Meissner, J. Phys. G 28, R1 (2002). hep-ph/0107088

    Article  ADS  Google Scholar 

  102. T. Kitagaki et al., Phys. Rev. D 28, 436 (1983)

    Article  ADS  Google Scholar 

  103. A.V. Radyushkin, Phys. Rev. D 58, 114008 (1998). hep-ph/9803316

    Article  ADS  Google Scholar 

  104. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, Eur. Phys. J. C 8, 409 (1999). hep-ph/9811253

    ADS  Google Scholar 

  105. A. Danagoulian, et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 98, 152001 (2007). nucl-ex/0701068

    Article  ADS  Google Scholar 

  106. H.W. Huang, P. Kroll, T. Morii, Eur. Phys. J. C 23, 301 (2002) [Erratum-ibid. C 31, 279 (2003)]. hep-ph/0110208

    Article  ADS  Google Scholar 

  107. M. Diehl, T. Feldmann, H.W. Huang, P. Kroll, Phys. Rev. D 67, 037502 (2003). hep-ph/0212138

    Article  ADS  Google Scholar 

  108. M. Diehl, T. Feldmann, R. Jakob, P. Kroll, Phys. Lett. B 460, 204 (1999). hep-ph/9903268

    Article  ADS  Google Scholar 

  109. D.J. Hamilton et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 94, 242001 (2005). nucl-ex/0410001

    Article  ADS  Google Scholar 

  110. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002). hep-ph/0201296

    Article  ADS  Google Scholar 

  111. J.C. Collins, Phys. Lett. B 536, 43 (2002). hep-ph/0204004

    Article  ADS  Google Scholar 

  112. M. Burkardt, Nucl. Phys. A 735, 185 (2004). hep-ph/0302144

    Article  ADS  Google Scholar 

  113. S. Meissner, A. Metz, K. Goeke, Phys. Rev. D 76, 034002 (2007). hep-ph/0703176

    Article  ADS  Google Scholar 

  114. L. Gamberg, M. Schlegel, AIP Conf. Proc. 1374, 309 (2011). arXiv:1012.3395

    Article  ADS  Google Scholar 

  115. A. Bacchetta, U. D’Alesio, M. Diehl, C.A. Miller, Phys. Rev. D 70, 117504 (2004). hep-ph/0410050

    Article  ADS  Google Scholar 

  116. M. Anselmino, M. Boglione, S. Melis, Phys. Rev. D 86, 014028 (2012). arXiv:1204.1239

    Article  ADS  Google Scholar 

  117. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Fortschr. Phys. 42, 101 (1994). hep-ph/9812448

    Article  Google Scholar 

  118. A.V. Radyushkin, Phys. Lett. B 449, 81 (1999). hep-ph/9810466

    Article  ADS  Google Scholar 

  119. A.V. Belitsky, D. Müller, A. Kirchner, Nucl. Phys. B 629, 323 (2002). hep-ph/0112108

    Article  ADS  Google Scholar 

  120. I.V. Musatov, A.V. Radyushkin, Phys. Rev. D 61, 074027 (2000). hep-ph/9905376

    Article  ADS  Google Scholar 

  121. M. Diehl, W. Kugler, A. Schäfer, C. Weiss, Phys. Rev. D 72, 034034 (2005) [Erratum-ibid. D 72, 059902 (2005)]. hep-ph/0506171

    Article  ADS  Google Scholar 

  122. S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 59, 809 (2009). arXiv:0809.4126

    Article  ADS  Google Scholar 

  123. F. Yuan, Phys. Rev. D 69, 051501 (2004). hep-ph/0311288

    Article  ADS  Google Scholar 

  124. A.H. Mueller, Phys. Rep. 73, 237 (1981)

    Article  ADS  Google Scholar 

  125. J. Arrington et al., nucl-ex/0408020

  126. Jefferson Lab Experiment E07-005, http://www.jlab.org/exp_prog/generated/apphallb.html

  127. M. Kohl (OLYMPUS Collaboration), AIP Conf. Proc. 1374, 527 (2011)

    Article  ADS  Google Scholar 

  128. J. Pumplin et al., Phys. Rev. D 65, 014013 (2001). hep-ph/0101032

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully thank John Arrington for discussions of the proton form factors and for providing numerical values for several of his results, Mariaelena Boglione for providing numerical values of the extraction [116] of the Sivers function, Daniela Rohe for correspondence about the neutron form factor results [54, 55], and Thorsten Feldmann for his collaboration at an early stage of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Diehl.

Appendices

Appendix A: Tables of form factors

In Table 20 we give the values and errors of R n for the data set we have selected. Except for the entries from Plaster 05, Geis 08 and Riordan 10, which directly quote results on R n, we have computed this ratio from \(G_{E}^{n}\) and the assumed value of \(G_{M}^{n}\) for the reasons explained in Sect. 3.2.

Table 20 Values of R n measured in polarization experiments on deuterium or 3He. References for the data sets are given in Table 4

In Table 21 we list the results for the flavor form factors we have extracted from our default data set as explained in Sect. 5.1.

Table 21 The flavor form factors we obtain by interpolation of the data, as explained in Sect. 5.1

Appendix B: Matrices for computing fit errors

In this appendix we give the information that is needed to compute parametric errors for our default fit ABM 1 and for the power-law fit of Sect. 3.4. A convenient procedure to propagate errors is the so-called Hessian method used in modern PDF determinations, see e.g. [64, 128]. We briefly describe this method and then list the relevant matrices.

Let us introduce the column vector p of the n original fit parameters, as well as the vector of transformed parameters z defined by

$$ \boldsymbol{p} - \boldsymbol{p}_0 = E \boldsymbol{z} , $$
(B.1)

where p 0 is the set of parameters that minimizes χ 2. The matrix E satisfies

$$ E E^{T} = V $$
(B.2)

with the standard covariance matrix V for the parameters p. The deviation of χ 2 from its minimum value is then given by

$$ \varDelta \chi^2 = (\boldsymbol{p} - \boldsymbol{p}_0)^T V^{-1} ( \boldsymbol{p} - \boldsymbol{p}_0) = \boldsymbol{z}^T \boldsymbol{z} . $$
(B.3)

The error on a function f of the parameters, as given by linear error propagation, can be written as

(B.4)

where the parameter set \(\boldsymbol{p}_{i}^{\pm}\) is specified by the condition

$$ \bigl( \boldsymbol{p}_i^{\pm} - \boldsymbol{p}_0 \bigr)_j = \pm E_{ji} . $$
(B.5)

In the second step of (B.4) we have approximated the derivative by a difference quotient, which is consistent in the region where linear error propagation is adequate. The vector given by the ith column of the matrix E thus gives the amount by which the central values of the parameters need to be shifted to obtain a set of parameters on the Δχ 2=1 contour.

In Table 22 we give the matrix E D for the default GPD fit (ABM 1) and the matrix E P for the power law fit of Sect. 3.4. The order of entries in the matrices corresponds to the following vectors of parameters:

(B.6)

The central values of the fit parameters are given in (50) and Table 11 for the GPD fit, and those of the power-law fit are given in Table 5.

Table 22 The matrix E D for the default GPD fit ABM 1 and the matrix E P for the power-law fit of Sect. 3.4. Entries are given in units of GeV−2 for rows 1 to 9 in E D and for rows 1 to 8 in E P

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, M., Kroll, P. Nucleon form factors, generalized parton distributions and quark angular momentum. Eur. Phys. J. C 73, 2397 (2013). https://doi.org/10.1140/epjc/s10052-013-2397-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2397-7

Keywords

Navigation