Skip to main content
Log in

Photon-fusion reactions from the chiral Lagrangian with dynamical light vector mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the reactions γγπ 0 π 0, π + π , \(K^{0}\bar{K}^{0}\), K + K , ηη and π 0 η based on a chiral Lagrangian with dynamical light vector mesons as formulated within the hadrogenesis conjecture. At present our chiral Lagrangian contains five unknown parameters that are relevant for the photon-fusion reactions. They parameterize the strength of interaction terms involving two vector meson fields. These parameters are fitted to photon-fusion data γγπ 0 π 0, π + π ,π 0 η and to the decay ηπ 0 γγ. In order to derive gauge invariant reaction amplitudes in the resonance region constraints from maximal analyticity and exact coupled-channel unitarity are used. Our results are in good agreement with the existing experimental data from threshold up to about 0.9 GeV for the two-pion final states. The a 0 meson in the π 0 η channel is dynamically generated and an accurate reproduction of the γγπ 0 η data is achieved up to 1.2 GeV. Based on our parameter sets we predict the γγ\(K^{0}\bar{K}^{0}\), K + K , ηη cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that in [12, 20] slightly different notations were used. The relations between e V , g D , g F , h P in [12, 20]—denoted by old—and f V , g 1, g 2, h P used here and in [21] are \(f_{V}= \frac{0.776~\mathrm{GeV}}{4e}e_{V}\), g 1=g D , g 2=g F and \(h_{P}=\frac{0.776~\mathrm{GeV}}{f_{V}}h_{P}[\mathit{old}]\).

  2. In the following we do not display any more the angular-momentum superscript J explicitly. Where not needed we also do not display the channel index ab.

  3. Usually the experimental results are limited to a range of |x|≤Z with x=cosθ. In this case the cross section is given by \(\sigma=2\int_{0}^{Z} \frac{d\sigma}{dx} \,dx\).

References

  1. M.R. Pennington, T. Mori, S. Uehara, Y. Watanabe, Eur. Phys. J. C 56, 1 (2008)

    Article  ADS  Google Scholar 

  2. J.A. Oller, L. Roca, Eur. Phys. J. A 37, 15 (2008)

    Article  ADS  Google Scholar 

  3. R. Garcia-Martin, B. Moussallam, Eur. Phys. J. C 70, 155 (2010)

    Article  ADS  Google Scholar 

  4. M. Hoferichter, D.R. Phillips, C. Schat, Eur. Phys. J. C 71, 1743 (2011)

    Article  ADS  Google Scholar 

  5. Y. Mao, X.G. Wang, O. Zhang, H. Zheng, Z.Y. Zhou, Phys. Rev. D 79, 116008 (2009)

    Article  ADS  Google Scholar 

  6. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 745, 84 (2006)

    Article  ADS  Google Scholar 

  7. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 728, 31 (2005)

    Article  ADS  Google Scholar 

  8. J. Bijnens, F. Cornet, Nucl. Phys. B 296, 557 (1988)

    Article  ADS  Google Scholar 

  9. J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. D 37, 2423 (1988)

    Article  ADS  Google Scholar 

  10. A. Gasparyan, M.F.M. Lutz, Nucl. Phys. A 848, 126 (2010)

    Article  ADS  Google Scholar 

  11. I.V. Danilkin, A.M. Gasparyan, M.F.M. Lutz, Phys. Lett. B 697, 147 (2011)

    Article  ADS  Google Scholar 

  12. I.V. Danilkin, L.I.R. Gil, M.F.M. Lutz, Phys. Lett. B 703, 504 (2011)

    Article  ADS  Google Scholar 

  13. A.M. Gasparyan, M.F.M. Lutz, B. Pasquini, Nucl. Phys. A 866, 79 (2011)

    Article  ADS  Google Scholar 

  14. A. Gasparyan, M. Lutz, E. Epelbaum. arXiv:1212.3057 [hep-ph]

  15. M.F.M. Lutz, E.E. Kolomeitsev, Found. Phys. 31, 1671 (2001)

    Article  Google Scholar 

  16. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

    Article  ADS  Google Scholar 

  17. M.F.M. Lutz, E.E. Kolomeitsev, C.L. Korpa, Prog. Theor. Phys. Suppl. 156, 51 (2004)

    Article  ADS  Google Scholar 

  18. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 755, 29 (2005)

    Article  ADS  Google Scholar 

  19. M.F.M. Lutz, M. Soyeur, Nucl. Phys. A 813, 14 (2008)

    Article  ADS  Google Scholar 

  20. M.F.M. Lutz, S. Leupold, Nucl. Phys. A 813, 96 (2008)

    Article  ADS  Google Scholar 

  21. C. Terschlüsen, S. Leupold, M.F.M. Lutz. arXiv:1204.4125 [hep-ph]

  22. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  23. B. Kubis, U.G. Meissner, Nucl. Phys. A 679, 698 (2001)

    Article  ADS  Google Scholar 

  24. J.A. Oller, E. Oset, Nucl. Phys. A 629, 739 (1998)

    Article  ADS  Google Scholar 

  25. M.F.M. Lutz, I. Vidana, Eur. Phys. J. A 48, 124 (2012)

    Article  ADS  Google Scholar 

  26. J. Boyer et al., Phys. Rev. D 42, 1350 (1990)

    Article  ADS  Google Scholar 

  27. H. Behrend et al. (CELLO Collaboration), Z. Phys. C 56, 381 (1992)

    Article  ADS  Google Scholar 

  28. H. Marsiske et al. (Crystal Ball Collaboration), Phys. Rev. D 41, 3324 (1990)

    Article  ADS  Google Scholar 

  29. D. Antreasyan et al. (Crystal Ball Collaboration), Phys. Rev. D 33, 1847 (1986)

    Article  ADS  Google Scholar 

  30. H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48, 183 (1990)

    Article  Google Scholar 

  31. H.J. Behrend et al. (CELLO Collaboration), Z. Phys. C 43, 91 (1989)

    Article  ADS  Google Scholar 

  32. M. Althoff et al. (TASSO Collaboration), Z. Phys. C 29, 189 (1985)

    Article  ADS  Google Scholar 

  33. S. Uehara et al. (Belle Collaboration), Phys. Rev. D 79, 052009 (2009)

    Article  ADS  Google Scholar 

  34. T. Mori et al. (Belle Collaboration), J. Phys. Soc. Jpn. 76, 074102 (2007)

    Article  ADS  Google Scholar 

  35. S. Uehara et al. (Belle Collaboration), Phys. Rev. D 80, 032001 (2009)

    Article  ADS  Google Scholar 

  36. S. Uehara et al. (Belle Collaboration), Phys. Rev. D 82, 114031 (2010)

    Article  ADS  Google Scholar 

  37. S. Prakhov, eConf C070910, 159 (2007). http://www.slac.stanford.edu/econf/C070910/PDF/159.pdf

  38. S. Prakhov et al., Phys. Rev. C 78, 015206 (2008)

    Article  ADS  Google Scholar 

  39. M. Unverzagt (Crystal Ball at MAMI Collaboration), Nucl. Phys. B, Proc. Suppl. 198, 174 (2010)

    Article  ADS  Google Scholar 

  40. S. Leupold, M.F.M. Lutz, Eur. Phys. J. A 39, 205 (2009)

    Article  ADS  Google Scholar 

  41. C. Terschlüsen, S. Leupold, Phys. Lett. B 691, 191 (2010)

    Article  ADS  Google Scholar 

  42. V.B. Berestetskii, E. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Elmsford, 1982)

    Google Scholar 

  43. D. Varshalovich, A. Moskaev, V. Khersonskii, Qunatum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Google Scholar 

  44. S. Mandelstam, Phys. Rev. 112, 1344 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Mandelstam, Phys. Rev. 115, 1741 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Martin, Nuovo Cimento A 42, 930 (1965)

    Article  ADS  Google Scholar 

  47. A. Martin, Nuovo Cimento A 44, 1219 (1966)

    Article  ADS  Google Scholar 

  48. S. Roy, Phys. Lett. B 36, 353 (1971). doi:10.1016/0370-2693(71)90724-6

    ADS  Google Scholar 

  49. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). doi:10.1016/S0370-1573(01)00009-6

    Article  ADS  MATH  Google Scholar 

  50. P. Buettiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33, 409 (2004)

    Article  ADS  Google Scholar 

  51. R. Garcia-Martin, R. Kaminski, J. Pelaez, J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011)

    Article  ADS  Google Scholar 

  52. B. Moussallam, Eur. Phys. J. C 71, 1814 (2011)

    Article  ADS  Google Scholar 

  53. I.V. Danilkin, M.F.M. Lutz. arXiv:1208.2568 [hep-ph]

  54. G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  56. L. Ametller, J. Bijnens, A. Bramon, F. Cornet, Phys. Lett. B 276, 185 (1992)

    Article  ADS  Google Scholar 

  57. E. Oset, J.R. Pelaez, L. Roca, Phys. Rev. D 67, 073013 (2003)

    Article  ADS  Google Scholar 

  58. E. Oset, J.R. Pelaez, L. Roca, Phys. Rev. D 77, 073001 (2008)

    Article  ADS  Google Scholar 

  59. K. Lalwani, Measurement of the branching ratio of a rare decay ηπ 0 γγ with WASA-at-COSY. Ph.D. thesis, Department of Physics, Indian Institute of Technology, Bombay, 2010

  60. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997)

    Article  ADS  Google Scholar 

  61. M. Doring, U.G. Meissner, E. Oset, A. Rusetsky, Eur. Phys. J. A 47, 139 (2011)

    Article  ADS  Google Scholar 

  62. A. Gomez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002)

    Article  ADS  Google Scholar 

  63. N.N. Achasov, G.N. Shestakov, Phys. Usp. 54, 799 (2011)

    Article  ADS  Google Scholar 

  64. C.H. Lee, H. Yamagishi, I. Zahed, Nucl. Phys. A 653, 185 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of CT and SL has been supported by the European Community Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (HadronPhysics3, Grant Agreement No. 283286) under the Seventh Framework Programme of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. M. Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilkin, I.V., Lutz, M.F.M., Leupold, S. et al. Photon-fusion reactions from the chiral Lagrangian with dynamical light vector mesons. Eur. Phys. J. C 73, 2358 (2013). https://doi.org/10.1140/epjc/s10052-013-2358-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2358-1

Keywords

Navigation