Skip to main content
Log in

Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the effect of extending the standard MSTW parameterisation of input parton distribution functions (PDFs) using Chebyshev polynomials, rather than the usual expressions which involve a factor of the form (1+ϵx 0.5+γx). We find evidence that four powers in the polynomial are generally sufficient for high precision. Applying this to valence and sea quarks, the gluon already being sufficiently flexible and needing only two powers, we find an improvement in the global fit, but a significant change only in the small-x valence up-quark PDF, u V . We investigate the effect of also extending, and making more flexible, the ‘nuclear’ correction to deuteron structure functions. We show that the extended ‘Chebyshev’ parameterisation results in an improved stability in the deuteron corrections that are required for the best fit to the ‘global’ data. The resulting PDFs have a significantly, but not dramatically, altered valence down-quark distribution, d V . It is shown that, for the extended set of MSTW PDFs, their uncertainties can be obtained using 23, rather than the usual 20, orthogonal ‘uncertainty’ eigenvectors. This is true both without and with extended deuteron corrections. Since the dominant effect is on the valence quarks, we present a detailed study of the dependence of the valence–sea separation on the predictions for the decay lepton charge asymmetry which results from W ± production at the LHC, illustrating the PDFs and the x range probed for different experimental scenarios. We show that the modified MSTW PDFs make significantly improved predictions for these data at the LHC, particularly for high values of the p T cut of the decay lepton. However, this is a special case, since the asymmetry is extremely sensitive to valence–sea details, and in particular to the combination u V d V of valence PDFs for \(x \sim M_{W}/\sqrt{s}\) at low lepton rapidities. We show that the predictions for a wide variety of total cross sections are very similar to those obtained using the MSTW2008 PDFs, with changes being much smaller than the PDF uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. The HERAPDF fit [5] uses fewer free parameters in their study. However, in that analysis the effect of adding extra parameters is included as part of the additional “parameterisation” uncertainty.

  2. It was, however, shown how an arbitrary number of Monte Carlo sets of PDFs could be generated starting with the eigenvector definition.

  3. At NNLO it is necessary to make some approximations in modelling unknown coefficient functions for some processes.

  4. We may compare our correction with that obtained in a study [36] which appeared after the submission of our paper. Our result lies between the smaller (CJ12min) and middle (CJ12mid) estimates of the corrections in [36]; the larger corrections (CJ12max) are disfavoured by the fit quality. Hence, there is complete compatibility.

  5. We note that an NNPDF study on DIS data only noticed a small change of PDFs relative to uncertainties when nuclear corrections were added to the default fit, in which they are omitted [31].

  6. There is also in principle some sensitivity to the numerical value below which the improvement in χ 2 with successive iterations must fall for the fit to stop. This is normally taken as 0.1, but further reductions generally lead to changes very much smaller than the PDF uncertainty, as has been checked in this study.

  7. For massless leptons, the pseudorapidity η is equal to the rapidity y .

  8. We note that the particularly good description by CT10 is probably due to the larger strange distribution in their PDF set than in the others. A study by ATLAS has shown that their data prefer a large strange distribution, in fact seemingly one which is the same size as the \(\bar{u}\) and \(\bar{d}\) distributions even at low Q 2 [47]. We do indeed see some small improvement in fit quality associated with the eigenvector most associated with the strange PDF normalisation, but rather less than for the three eigenvectors 9, 14, 18 mentioned below. This means that only a marginal improvement can be obtained by changing the strange distribution by one standard deviation. We have confirmed this by making a more thorough study. Moreover, a study by the NNPDF group has reached a similar conclusion [6].

References

  1. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  2. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 [hep-ph]

    Article  ADS  Google Scholar 

  3. S. Alekhin, J. Blumlein, S. Moch, Phys. Rev. D 86, 054009 (2012). arXiv:1202.2281 [hep-ph]

    Article  ADS  Google Scholar 

  4. P. Jimenez-Delgado, E. Reya, Phys. Rev. D 79, 074023 (2009). arXiv:0810.4274 [hep-ph]

    Article  ADS  Google Scholar 

  5. F.D. Aaron et al. (H1 and ZEUS Collaboration), J. High Energy Phys. 1001, 109 (2010). arXiv:0911.0884 [hep-ex]

    Article  ADS  Google Scholar 

  6. R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio, S. Forte, A. Guffanti, N.P. Hartland et al., arXiv:1207.1303 [hep-ph]

  7. R.D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, Nucl. Phys. B 838, 136 (2010). arXiv:1002.4407 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  8. J. Pumplin, Phys. Rev. D 82, 114020 (2010). arXiv:0909.5176 [hep-ph]

    Article  ADS  Google Scholar 

  9. G. Watt, R.S. Thorne, J. High Energy Phys. 1208, 052 (2012). arXiv:1205.4024 [hep-ph]

    Article  ADS  Google Scholar 

  10. A. De Roeck, R.S. Thorne, Prog. Part. Nucl. Phys. 66, 727 (2011). arXiv:1103.0555 [hep-ph]

    Article  ADS  Google Scholar 

  11. A. Glazov, S. Moch, V. Radescu, Phys. Lett. B 695, 238 (2011). arXiv:1009.6170 [hep-ph]

    Article  ADS  Google Scholar 

  12. R.S. Thorne, A.D. Martin, W.J. Stirling, G. Watt, in PoS DIS 2010 (2010), p. 052. arXiv:1006.2753 [hep-ph]

    Google Scholar 

  13. A.D. Martin, W.J. Stirling, R.G. Roberts, Phys. Rev. D 50, 6734 (1994). hep-ph/9406315

    Article  ADS  Google Scholar 

  14. B. Badelek, J. Kwiecinski, Phys. Rev. D 50, 4 (1994). hep-ph/9401314

    Article  ADS  Google Scholar 

  15. A.D. Martin, W.J. Stirling, R.G. Roberts, Phys. Rev. D 51, 4756 (1995). hep-ph/9409410

    Article  ADS  Google Scholar 

  16. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 211801 (2008). arXiv:0807.3367 [hep-ex]

    Article  ADS  Google Scholar 

  17. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 072004 (2012). arXiv:1109.5141 [hep-ex]

    Article  ADS  Google Scholar 

  18. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 109, 111806 (2012). arXiv:1206.2598 [hep-ex]

    Article  ADS  Google Scholar 

  19. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 18, 117 (2000). hep-ph/0007099

    Article  ADS  Google Scholar 

  20. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23, 73 (2002). hep-ph/0110215

    Article  ADS  Google Scholar 

  21. A.C. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 223, 485 (1989)

    Article  ADS  Google Scholar 

  22. M. Arneodo et al. (New Muon Collaboration), Nucl. Phys. B 483, 3 (1997). hep-ph/9610231

    Article  ADS  Google Scholar 

  23. J.C. Webb, hep-ex/0301031

  24. R.S. Towell et al. (FNAL E866/NuSea Collaboration), Phys. Rev. D 64, 052002 (2001). hep-ex/0103030

    Article  ADS  Google Scholar 

  25. D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 051104 (2005). hep-ex/0501023

    Article  ADS  Google Scholar 

  26. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 77, 011106 (2008). arXiv:0709.4254 [hep-ex]

    Article  ADS  Google Scholar 

  27. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 76, 012003 (2007). hep-ex/0702025

    Article  ADS  Google Scholar 

  28. T.A. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 692, 232 (2010). arXiv:0908.3914 [hep-ex]

    Article  ADS  Google Scholar 

  29. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 64, 653 (2009). arXiv:0905.3531 [hep-ph]

    Article  ADS  Google Scholar 

  30. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004). hep-ph/0311227

    Article  ADS  Google Scholar 

  31. R.D. Ball et al. (NNPDF Collaboration), Nucl. Phys. B 823, 195 (2009). arXiv:0906.1958 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  32. A. Accardi, W. Melnitchouk, J.F. Owens, M.E. Christy, C.E. Keppel, L. Zhu, J.G. Morfin, Phys. Rev. D 84, 014008 (2011). arXiv:1102.3686 [hep-ph]

    Article  ADS  Google Scholar 

  33. L.T. Brady, A. Accardi, W. Melnitchouk, J.F. Owens, J. High Energy Phys. 1206, 019 (2012). arXiv:1110.5398 [hep-ph]

    Article  ADS  Google Scholar 

  34. W. Melnitchouk, A.W. Schreiber, A.W. Thomas, Phys. Lett. B 335, 11 (1994). nucl-th/9407007

    Article  ADS  Google Scholar 

  35. S.A. Kulagin, R. Petti, Phys. Rev. C 82, 054614 (2010). arXiv:1004.3062 [hep-ph]

    Article  ADS  Google Scholar 

  36. J.F. Owens, A. Accardi, W. Melnitchouk, arXiv:1212.1702 [hep-ph]

  37. R.D. Ball et al. (NNPDF Collaboration), Nucl. Phys. B 849, 112 (2011). [Erratum-ibid. 854, 926 (2012). Erratum-ibid. 855, 927 (2012)]. arXiv:1012.0836 [hep-ph]

    Article  ADS  Google Scholar 

  38. R.S. Thorne, G. Watt, J. High Energy Phys. 1108, 100 (2011). arXiv:1106.5789 [hep-ph]

    Article  ADS  Google Scholar 

  39. K. Melnikov, F. Petriello, Phys. Rev. D 74, 114017 (2006). hep-ph/0609070

    Article  ADS  Google Scholar 

  40. S. Catani, G. Ferrera, M. Grazzini, J. High Energy Phys. 1005, 006 (2010). arXiv:1002.3115 [hep-ph]

    Article  ADS  Google Scholar 

  41. R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 1206, 058 (2012). arXiv:1204.1620 [hep-ex]

    Article  ADS  Google Scholar 

  42. R.D. Ball, S. Carrazza, L. Del Debbio, S. Forte, J. Gao, N. Hartland, J. Huston, P. Nadolsky et al., arXiv:1211.5142 [hep-ph]

  43. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1104, 050 (2011). arXiv:1103.3470 [hep-ex]

    Article  ADS  Google Scholar 

  44. W.T. Giele, S. Keller, Phys. Rev. D 58, 094023 (1998). hep-ph/9803393

    Article  ADS  Google Scholar 

  45. T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, Eur. Phys. J. C 66, 503 (2010). arXiv:0911.2985 [hep-ph]

    Article  ADS  Google Scholar 

  46. J.M. Campbell, R.K. Ellis, Phys. Rev. D 65, 113007 (2002). hep-ph/0202176

    Article  ADS  Google Scholar 

  47. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 012001 (2012). arXiv:1203.4051 [hep-ex]

    Article  ADS  Google Scholar 

  48. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1110, 132 (2011). arXiv:1107.4789 [hep-ex]

    Article  ADS  Google Scholar 

  49. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 014022 (2012). arXiv:1112.6297 [hep-ex]

    Article  ADS  Google Scholar 

  50. Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002). hep-ph/0110315

    Article  ADS  Google Scholar 

  51. Z. Nagy, Phys. Rev. D 68, 094002 (2003). hep-ph/0307268

    Article  ADS  Google Scholar 

  52. T. Kluge, K. Rabbertz, M. Wobisch, hep-ph/0609285

  53. J. Santaolalla (CMS and ATLAS Collaborations), EPJ Web Conf. 28, 06007 (2012). arXiv:1202.0149 [hep-ex]

    Article  Google Scholar 

  54. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-129/, http://cdsweb.cern.ch/record/1383832

  55. S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103, 082001 (2009). arXiv:0903.2120 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Stefano Forte and Jon Pumplin for discussion on some of the issues in this article. The work of R.S.T. is supported partly by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Thorne.

Additional information

Work of A.J.Th.M. Mathijssen mainly done while at University College London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A.D., Mathijssen, A.J.T.M., Stirling, W.J. et al. Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays. Eur. Phys. J. C 73, 2318 (2013). https://doi.org/10.1140/epjc/s10052-013-2318-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2318-9

Keywords

Navigation