Skip to main content
Log in

No radial excitations in low energy QCD. II. The shrinking radius of hadrons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss the implications of our prior results obtained in our companion paper (Eur. Phys. J. C (2013). doi:10.1140/epjc/s10052-013-2298-9). Inescapably, they lead to three laws governing the size of hadrons, including in particular protons and neutrons that make up the bulk of ordinary matter: (a) there are no radial excitations in low-energy QCD; (b) the size of a hadron is largest in its ground state; (c) the hadron’s size shrinks when its orbital excitation increases. The second and third laws follow from the first law. It follows that the path from confinement to asymptotic freedom is a Regge trajectory. It also follows that the top quark is a free, albeit short-lived, quark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that L<n.

  2. The author is grateful to Guy de Teramond for discussions of this point.

  3. Phrase graciously provided by Frank Wilczek.

References

  1. T. Friedmann, No radial excitations in low energy QCD. I. Diquarks and classification of mesons. Eur. Phys. J. C (2013) 73:2298. arXiv:0910.2229

  2. M. Karliner, H.J. Lipkin, Possibility of Exotic States in the Upsilon system. arXiv:0802.0649 [hep-ph]

  3. J. Beringer et al. (Particle Data Group Collaboration), Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  4. C. Alexandrou, T. Korzec, T. Leontiou, J.W. Negele, A. Tsapalis, Electromagnetic form factors of the Delta baryon, in PoS, LATTICE 2007 (2006), p. 149. arXiv:0710.2744 [hep-lat]

    Google Scholar 

  5. S. Nussinov, R. Shrock, On the π and K and \(q\bar{q}\) bound states and approximate Nambu-Goldstone bosons. Phys. Rev. D 79, 016005 (2009). arXiv:0811.3404 [hep-ph]

    Article  ADS  Google Scholar 

  6. G.F. Chew, S.C. Frautschi, Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41 (1962)

    Article  ADS  Google Scholar 

  7. F. Wilczek, Diquarks as inspiration and as objects. arXiv:hep-ph/0409168

  8. A. Selem, F. Wilczek, Hadron systematics and emergent diquarks. arXiv:hep-ph/0602128

  9. D.J. Gross, The discovery of asymptotic freedom and the emergence of QCD. Proc. Natl. Acad. Sci. 102(5717), 9099 (2005)

    Article  ADS  MATH  Google Scholar 

  10. D.J. Gross, The discovery of asymptotic freedom and the emergence of QCD. Int. J. Mod. Phys. A 20, 5717 (2005)

    Article  ADS  MATH  Google Scholar 

  11. D.J. Gross, The discovery of asymptotic freedom and the emergence of QCD. Rev. Mod. Phys. 77, 837–849 (2005)

    Article  ADS  MATH  Google Scholar 

  12. F. Wilczek, Asymptotic freedom: from paradox to paradigm. Proc. Natl. Acad. Sci. 102, 8403 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. F. Wilczek, Asymptotic freedom: from paradox to paradigm. Int. J. Mod. Phys. A 20, 5753 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. F. Wilczek, Asymptotic freedom: from paradox to paradigm. Rev. Mod. Phys. 77, 857–870 (2005). arXiv:hep-ph/0502113

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  16. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  17. J.C. Collins, M.J. Perry, Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  18. M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: from “a new state of matter” to “the perfect fluid”. arXiv:nucl-ex/0603003

  19. K. Johnson, C.B. Thorn, String—like solutions of the bag model. Phys. Rev. D 13, 1934 (1976)

    ADS  Google Scholar 

  20. N. Isgur, J. Paton, A flux tube model for hadrons. Phys. Lett. B 124, 247 (1983)

    ADS  Google Scholar 

  21. Y. Nambu, Strings, monopoles, and gauge fields. Phys. Rev. D 10, 4262 (1974)

    Article  ADS  Google Scholar 

  22. T. Barnes, F.E. Close, E.S. Swanson, Hybrid and conventional mesons in the flux tube model: numerical studies and their phenomenological implications. Phys. Rev. D 52, 5242 (1995). arXiv:hep-ph/9501405

    Article  ADS  Google Scholar 

  23. M.A. Shifman, A.I. Vainshtein, Highly excited mesons, linear Regge trajectories and the pattern of the chiral symmetry realization. Phys. Rev. D 77, 034002 (2008). arXiv:0710.0863 [hep-ph]

    Article  ADS  Google Scholar 

  24. L.Y. Glozman, Restoration of chiral symmetry in excited hadrons. Acta Phys. Pol. B 35, 2985 (2004). arXiv:hep-ph/0410194

    ADS  Google Scholar 

  25. A.M. Badalian, B.L.G. Bakker, Yu.A. Simonov, Light meson radial Regge trajectories. Phys. Rev. D 66, 034026 (2002). arXiv:hep-ph/0204088

    ADS  Google Scholar 

  26. G.S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling (SESAM Collaboration), Observation of string breaking in QCD. Phys. Rev. D 71, 114513 (2005). arXiv:hep-lat/0505012

    ADS  Google Scholar 

  27. F. Abe et al. (CDF Collaboration), Observation of top quark production in \(\bar{p}\) p collisions with the collider detector at Fermilab. Phys. Rev. Lett. 74, 2626–2631 (1995)

    Article  ADS  Google Scholar 

  28. S. Abachi et al. (D0 Collaboration), Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995)

    Article  ADS  Google Scholar 

  29. V.M. Abazov et al. (D0 Collaboration), Observation of single top-quark production. Phys. Rev. Lett. 103, 092001 (2009)

    Article  ADS  Google Scholar 

  30. T. Aaltonen et al. (CDF Collaboration), First observation of electroweak single top quark production. Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex]

    Article  ADS  Google Scholar 

  31. I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kuhn, P.M. Zerwas, Production and decay properties of ultraheavy quarks. Phys. Lett. B 181, 157 (1986)

    ADS  Google Scholar 

  32. T. Friedmann, No radial excitations in low energy QCD. I. Diquarks and classification of mesons. arxiv:0910.2229 [hep-ph], v. 1

  33. T. Friedmann, No radial excitations in low energy QCD. II. The shrinking radius of hadrons. arxiv:0910.2231 [hep-ph], v. 1

  34. R. Pohl et al., The size of the proton. Nature 466, 213–216 (2010)

    Article  ADS  Google Scholar 

  35. A. Antognini et al., Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  36. R.F. Perez Benito, Exclusive ρ 0 production measured with the HERMES recoil detector. Doctoral dissertation, Giessen University (2010)

  37. A. Bondar et al. (Belle Collaboration), Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012). arXiv:1110.2251 [hep-ex]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Frank Wilczek, who gave me a glimpse into his work on baryon systematics, and in response to my question “what about mesons?” encouraged me to pursue them. This work is the result. I am also grateful to Robert L. Jaffe, Howard Georgi, Richard Brower, Usha Mallik, Hulya Guler, Dan Pirjol, Ayana Holloway, and Guy de Teramond for helpful discussions. This work was supported in part by funds provided by the U.S. Department of Energy (DOE) under cooperative research agreement DE-FC02-94ER40818 and in part by US DOE Grant number DE-FG02-91ER40685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Friedmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedmann, T. No radial excitations in low energy QCD. II. The shrinking radius of hadrons. Eur. Phys. J. C 73, 2299 (2013). https://doi.org/10.1140/epjc/s10052-013-2299-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2299-8

Keywords

Navigation