Skip to main content
Log in

Standard model gauge coupling unification

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the low energy evolution of coupling constants of the standard model and show that gauge coupling unification can be achieved at the electroweak scale with a suitable normalization. We choose the grand unification group to be the semidirect product of Spin(8) by S 3. In this case the three low energy gauge couplings and the two scalar self-couplings are determined in terms of two independent parameters. In particular, it gives a precise prediction for the mass of the Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  2. H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  3. H. Georgi, H.R. Quinn, S. Weinberg, Phys. Rev. Lett. 33, 451 (1974)

    Article  ADS  Google Scholar 

  4. P. Langacker, M.X. Luo, Phys. Rev. D 44, 817 (1991)

    Article  ADS  Google Scholar 

  5. J.R. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 260, 131 (1991)

    Article  ADS  Google Scholar 

  6. U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. B 260, 447 (1991)

    Article  ADS  Google Scholar 

  7. W.J. Marciano, in Eighth Workshop on Grand Unification, ed. by K. Wali (World Scientific, Singapore, 1987)

    Google Scholar 

  8. N.S. Manton, Nucl. Phys. B 158, 141 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Hosotani, Phys. Lett. B 126, 309 (1983)

    Article  ADS  Google Scholar 

  10. H. Hatanaka, T. Inami, C.S. Lim, Mod. Phys. Lett. A 13, 2601 (1998)

    Article  ADS  Google Scholar 

  11. Y. Kawamura, Prog. Theor. Phys. 105, 999 (2001)

    Article  ADS  Google Scholar 

  12. S. Doro, Math. Proc. Camb. Philos. Soc. 83, 377 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Hebecker, J. March-Russell, Nucl. Phys. B 625, 128 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Sirlin, Phys. Rev. D 22, 971 (1980)

    Article  ADS  Google Scholar 

  15. A. Sirlin, Phys. Rev. D 29, 89 (1984)

    Article  ADS  Google Scholar 

  16. D.C. Kennedy, B.W. Lynn, C.J.C. Im, R.G. Stuart, Nucl. Phys. B 321, 83 (1989)

    Article  ADS  Google Scholar 

  17. D.C. Kennedy, B.W. Lynn, Nucl. Phys. B 322, 1 (1989)

    Article  ADS  Google Scholar 

  18. D.Yu. Bardin, M.S. Bilenky, G. Mitselmakher, T. Riemann, M. Sachwitz, Z. Phys. C 44, 493 (1989)

    Article  Google Scholar 

  19. W. Hollik, Fortschr. Phys. 38, 165 (1990)

    Article  Google Scholar 

  20. P. Langacker (ed.), Precision Tests of the Standard Electroweak Model (World Scientific, Singapore, 1995)

    Google Scholar 

  21. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  22. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161 (1991)

    Article  ADS  Google Scholar 

  23. V.A. Novikov, L.B. Okun, M.I. Vysotsky, Nucl. Phys. B 397, 35 (1993)

    Article  ADS  Google Scholar 

  24. S. Schael et al., Phys. Rep. 427, 257 (2006)

    Google Scholar 

  25. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 101, 012002 (2008)

    Article  ADS  Google Scholar 

  26. A.D. Martin, W.J. Stirlingb, R.S. Thornec, G. Watta, Eur. Phys. J. C 64, 653 (2009)

    Article  ADS  Google Scholar 

  27. S. Bethke, Eur. Phys. J. C 64, 689 (2009)

    Article  ADS  Google Scholar 

  28. S. Coleman, E. Weinberg, Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  29. T.P. Cheng, L.R. Li, Gauge Theory of Elementary Particle Physics (Oxford University Press, Oxford, 1984)

    Google Scholar 

  30. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  31. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  32. F. Englert, Phys. Lett. B 119, 339 (1982)

    Article  ADS  Google Scholar 

  33. M.J. Duff, B.E.W. Nilsson, C.N. Pope, Phys. Rep. 130, 1 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  34. J.A. Harvey, A. Strominger, Phys. Rev. Lett. 66, 549 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Loginov.

Appendices

Appendix A: Octonions

We recall that the algebra of octonions \(\mathbb{O}\) is a real linear algebra with the canonical basis e 0=1,e 1,…,e 7 such that

$$ e_{i}e_{j}=-\delta_{ij}+c_{ijk}e_{k}, $$
(A.1)

where the structure constants c ijk are completely antisymmetric and nonzero and equal to unity for the seven combinations (or cycles)

$$ (ijk)=(123),(154),(167),(264),(275),(347),(365). $$
(A.2)

The algebra of octonions is not associative but alternative, i.e. the associator

$$ (x,y,z)=(xy)z-x(yz) $$
(A.3)

is totally antisymmetric in x,y,z. Consequently, any two elements of \(\mathbb{O}\) generate an associative subalgebra. The algebra \(\mathbb{O}\) permits the involution (anti-automorphism of period two) \(x\to\bar{x}\) such that the elements

$$ t(x)=x+\bar{x},\qquad n(x)=\bar{x}x $$
(A.4)

are in ℝ. In the canonical basis, this involution is defined by \(\bar{e}_{i}=-e_{i}\). It follows that the bilinear form

$$ (x,y)=\frac{1}{2}(\bar{x}y+\bar{y}x) $$
(A.5)

is positive definite and defines an inner product on \(\mathbb{O}\). It is easy to prove that the quadratic form n(x) permits the composition

$$ n(xy)=n(x)n(y). $$
(A.6)

It follows from this that the seven-dimensional sphere

$$ \mathbb{S}^7=\bigl\{x\in\mathbb{O}\mid n(x)=1\bigr\} $$
(A.7)

is closed relative to the multiplication in \(\mathbb{O}\). Finally, since the quadratic form n(x) is positive definite, it follows that \(\mathbb{O}\) is a division algebra.

Appendix B: Triality

Let x be any element of \(\mathbb{O}\). The left multiplications L x and right multiplications R x of \(\mathbb{O}\) which are determined by x are defined by

$$ L_{x}y=xy,\qquad R_{x}y=yx $$
(B.1)

for all y in \(\mathbb{O}\). Clearly L x and R x are linear operators on \(\mathbb{O}\). We choose the canonical basis and denote by L i and R i the operators \(L_{e_{i}}\) and \(R_{e_{i}}\), respectively. Then from (A.1) and the fully antisymmetry of the associator (A.3), we get

$$ L_{i}L_{j}+L_{j}L_{i}=-2 \delta_{ij}I, $$
(B.2)

where I is the identity 8×8 matrix. (Of course, a similar formula is true for the right multiplications.) Hence L 1,…,L 7 are generators of the Clifford algebra Cl 0,7(ℝ), and therefore they generate the Lie algebra so(8). This is the Lie multiplication algebra of \(\mathbb{O}\).

In this algebra, we separate the subspaces L spanned by the operators L i and the subalgebra so(7) s spanned by the operators

(B.3)
(B.4)

(The latter linearly generate the 14-dimensional exceptional simple Lie algebra g 2.) This imply that the algebra so(8) decomposes into the direct sum

$$ \mathit{so}(8)=\mathit{so}(7)_{s}\oplus L. $$
(B.5)

The algebra so(8) admits the outer automorphisms ρ and σ of orders 3 and 2 respectively. We may define them by

$$ \left.\begin{array}{l} L_{i}^{\rho} =R_{i},\qquad R_{i}^{\rho}=-L_{i}-R_{i},\\ \noalign{\vspace*{3pt}} L_{i}^{\sigma}=-R_{i},\qquad R_{i}^{\sigma}=-L_{i}. \end{array}\right\} $$
(B.6)

Obviously, the automorphisms ρσ, σρ, and σ fix all elements of so(7) s , \(\mathit{so}(7)_{c}=\mathit{so}(7)_{s}^{\rho}\), and \(\mathit{so}(7)_{v}=\mathit{so}(7)_{s}^{\rho^{2}}\), respectively. The elements of intersection of the subalgebras, i.e. the elements of g 2, is fixed by ρ.

Just as for so(8), the group Spin(8) also admits the outer automorphisms ρ and σ. According to (B.6), they are defined by

$$ \left.\begin{array}{l} L_{a}^{\rho}=R_{a},\qquad R_{a}^{\rho}=L_{a}^{-1}R_{a}^{-1},\\ \noalign{\vspace*{3pt}} L_{a}^{\sigma}=R_{a}^{-1},\qquad R_{a}^{\sigma}=L_{a}^{-1},\end{array} \right\} $$
(B.7)

where \(a\in\mathbb{S}^{7}\). The automorphisms ρσ, σρ, and σ fix the elements of SO(7) s , \(\mathit{SO}(7)_{c}=\mathit{SO}(7)_{s}^{\rho}\), and \(\mathit{SO}(7)_{v}=\mathit{SO}(7)_{s}^{\rho^{2}}\) respectively. The intersection of the group, i.e. G 2, is fixed by ρ. Here SO(7) v is generated by the elements

(B.8)
(B.9)

Note also that these automorphisms permute inequivalent irreducible representations 8 s , 8 c , and 8 v of the Spin(8) group having the same dimensionality.

Appendix C: Complexification

Suppose ℂ is a subalgebra of \(\mathbb{O}\) spanned by the elements 1 and i=e 7. We may consider \(\mathbb{O}\) as a four dimensional complex (or rather unitary) space relative to the multiplication ax, where a∈ℂ and \(x\in\mathbb{O}\). This space is invariant under the unitary group, SU(4) s ×U(1), the Lie algebra of which decomposes into the direct sum

$$ \mathit{su}(4)_{s}\oplus u(1)=\mathit{su}(3)_{s}\oplus \mathit{su}(2)_{s}\oplus u(1)\oplus V_{s} $$
(C.1)

of the subspaces (but not the Lie subalgebras). We write down the generators of SU(4) s ×U(1) in the explicit form.

(1) su(3) s :

(C.2)
(C.3)
(C.4)
(C.5)
(C.6)
(C.7)
(C.8)
(C.9)

(2) su(2) s u(1):

(C.10)
(C.11)
(C.12)
(C.13)

(3) V s :

(C.14)
(C.15)
(C.16)
(C.17)

Here e ij is the 4×4 matrix with (i,j)th entry 1, and all other entries 0. Note that the automorphisms ρ and σ fix the elements of su(3) s and the automorphism ρσ fixes the elements of su(2) s and V s , while R 7u(1) is not invariant under any element of S 3. Note also that SU(4) s ×U(1) is the centralizer of R 7 in Spin(8).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loginov, E.K. Standard model gauge coupling unification. Eur. Phys. J. C 73, 2293 (2013). https://doi.org/10.1140/epjc/s10052-013-2293-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2293-1

Keywords

Navigation