Skip to main content
Log in

Explaining the Higgs decays at the LHC with an extended electroweak model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C ⊗SU(3) L ⊗U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126–125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ , WW , bottom quarks, and tau leptons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We take here the condition on the scalar fields self-couplings λ 1=λ 2 in the appendix of Ref. [7]. Such a simplification also leads to a maximal mixing between h=h 1 and another scalar h 2 which, naturally, could be heavier than h.

  2. This particle can be made stable by imposing a symmetry that transforms only the 341 fields which are singlet under the 331 symmetry. It is in this sense that we call it a typical 341 particle.

  3. In 341 models, the expected signal rate for the process pphγγ is the same as the minimal 331. The SUSY331 gives additional contributions both to the Higgs boson production in gluon fusion, as the Higgs decay to photons. However, for a heavy SUSY spectrum the extra states would have a small impact on σ×BR(hγγ).

  4. See Ref. [22] for a good compilation of the relevant experimental data.

References

  1. J. Incandela, CMS talk at latest update in the search for the Higgs boson at CERN, July 4, 2012 [Slides]

  2. F. Gianotti, ATLAS talk at latest update in the search for the Higgs boson at CERN, July 4, 2012 [Slides]

  3. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  5. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  6. E. James, W. Fisher. Tevatron Higgs seminar, July 2, 2012 [Slides]

  7. A. Alves, E.R. Barreto, A.G. Dias, F.S. Queiroz, C.A. Pires, P.S.R. da Silva, Phys. Rev. D 84, 115004 (2011). arXiv:1109.0238 [hep-ph]

    Article  ADS  Google Scholar 

  8. F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992). hep-ph/9206242

    Article  ADS  Google Scholar 

  9. P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)

    Article  ADS  Google Scholar 

  10. V. Pleitez, M.D. Tonasse, Phys. Rev. D 48, 2353 (1993). hep-ph/9301232

    Article  ADS  Google Scholar 

  11. M. Carena, I. Low, C.E.M. Wagner, arXiv:1206.1082 [hep-ph]

  12. J. Gunion, X. Jaing, S. Kram, arXiv:1207.1545 [hep-ph]

  13. A. Arbeya, M. Battaglia, A. Djouadi, F. Mahmoudi, arXiv:1207.1348 [hep-ph]

  14. R. Benbrik, M.G. Bock, S. Heinemeyer, O. Stal, G. Weiglein, L. Zeune, arXiv:1207.1096 [hep-ph]

  15. S. Chang, C.A. Newby, N. Raj, C. Wanotayaroj, arXiv:1207.0493 [hep-ph]

  16. V. Barger, M. Ishida, W.-Y. Keung, arXiv:1207.0779 [hep-ph]

  17. B. Bellazzini, C. Petersson, R. Torre, arXiv:1207.0803 [hep-ph]

  18. K. Cheung, T.-C. Yuan, Phys. Rev. Lett. 108, 141602 (2012). arXiv:1112.4146 [hep-ph]

    Article  ADS  Google Scholar 

  19. H.S. Cheon, S.K. Kang, arXiv:1207.1083 [hep-ph]

  20. M. Montull, F. Riva, arXiv:1207.1716 [hep-ph]

  21. J. Ellis, T. You, arXiv:1207.1693 [hep-ph]

  22. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1207.1344 [hep-ph]

  23. J.R. Espinosa, C. Grojean, M. Muhlleitner, M. Trott, arXiv:1207.1717 [hep-ph]

  24. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv:1207.1347 [hep-ph]

  25. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, arXiv:1207.1718 [hep-ph]

  26. J.D.R. Alvares, C.A. de S. Pires, F.S. Queiroz, D. Restrepo, P.S. Rodrigues da Silva, arXiv:1206.5779 [hep-ph]

  27. J. Ellis, M.K. Gaillard, D. Nanopoulos, Nucl. Phys. B 106, 292 (1976)

    ADS  Google Scholar 

  28. A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, M.A. Shifman, Sov. J. Nucl. Phys. 30, 711 (1979)

    Google Scholar 

  29. L.B. Okun, Leptons and Quarks (North-Holland, Amsterdam, 1982)

    Google Scholar 

  30. J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide (Perseus Books, Cambridge, 1990)

    Google Scholar 

  31. M.B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988)

    Google Scholar 

  32. P.R.D. Pinheiro, C.A. de S. Pires, P.S. Rodrigues da Silva, in preparation

  33. T.V. Duong, E. Ma, Phys. Lett. B 316, 307 (1993). hep-ph/9306264

    Article  ADS  Google Scholar 

  34. J.C. Montero, V. Pleitez, M.C. Rodriguez, Phys. Rev. D 65, 035006 (2002). hep-ph/0012178

    Article  ADS  Google Scholar 

  35. S.P. Martin, hep-ph/9709356

  36. J.G. Ferreira Jr., C.A. de S. Pires, P.S. Rodrigues da Silva, A. Sampieri, in preparation

  37. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  38. G. Aad et al. (ATLAS Collaboration), arXiv:1207.0319 [hep-ex]

  39. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012). arXiv:1202.1488 [hep-ex]

    Article  ADS  Google Scholar 

  40. Tevatron New Physics Higgs Working Group and CDF and D0 Collaborations, arXiv:1207.0449 [hep-ex]

  41. G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998)

    Google Scholar 

  42. K. Sasaki, Phys. Lett. B 308, 297 (1993)

    Article  ADS  Google Scholar 

  43. P.H. Frampton, M. Harada, Phys. Rev. D 58, 095013 (1998). hep-ph/9711448

    Article  ADS  Google Scholar 

  44. H.N. Long, T. Inami, Phys. Rev. D 61, 075002 (2000). hep-ph/9902475

    Article  ADS  Google Scholar 

  45. A.G. Dias, J.C. Montero, V. Pleitez, Phys. Lett. B 637, 85 (2006). hep-ph/0511084

    Article  ADS  Google Scholar 

  46. J. Beringer et al. (PDG Collaboration), Phys. Rev. D 86, 010001 (2012). http://pdg.lbl.gov

    Article  ADS  Google Scholar 

  47. L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999). hep-ex/9807011

    Article  ADS  Google Scholar 

  48. M.B. Tully, G.C. Joshi, Phys. Lett. B 466, 333 (1993). hep-ph/9905552

    ADS  Google Scholar 

  49. E.M. Gregores, A. Gusso, S.F. Novaes, Phys. Rev. D 64, 015004 (2001). hep-ph/0101048

    Article  ADS  Google Scholar 

  50. V. Pleitez, Phys. Rev. D 61, 057903 (2000). hep-ph/9905406

    Article  ADS  Google Scholar 

  51. P.H. Frampton, D. Ng, Phys. Rev. D 45, 4240 (1992)

    Article  ADS  Google Scholar 

  52. F. Cuypers, S. Davidson, Eur. Phys. J. C 2, 503 (1998)

    Article  ADS  Google Scholar 

  53. B. Dion, T. Grégoire, D. London, L. Marleau, H. Nadeau, Phys. Rev. D 59, 075006 (1999). hep-ph/9810534

    Article  ADS  Google Scholar 

  54. E. Ramirez Barreto, Y.A. Coutinho, J.S. Borges, Nucl. Phys. B 810, 210 (2009). arXiv:0811.0846

    Article  ADS  MATH  Google Scholar 

  55. E. Ramirez Barreto, Y.A. Coutinho, J.S. Borges, Phys. Rev. D 83, 075001 (2011). arXiv:1103.1267

    Article  ADS  Google Scholar 

  56. B. Meirose, A.A. Nepomuceno, Phys. Rev. D 84, 055002 (2011). arXiv:1105.6299 [hep-ph]

    Article  ADS  Google Scholar 

  57. E. Ramirez Barreto, Y.A. Coutinho, J.S. Borges, work in progress

  58. A. Alves, E.R. Barreto, A.G. Dias, Phys. Rev. D 86, 055025 (2012). arXiv:1203.2342 [hep-ph]

    Article  ADS  Google Scholar 

  59. P.H. Frampton, A. Rasin, Phys. Lett. B 482, 129 (2000). hep-ph/0002135

    Article  ADS  Google Scholar 

  60. E. Ramirez Barreto, Y.A. Coutinho, J.S. Borges, Phys. Lett. B 632, 675 (2006). hep-ph/0509355

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Pesquisa e Desenvolvimento Científico—CNPq, Coordenação de Aperfeiçoamento Pessoal de Nível Superior—CAPES, and Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ramirez Barreto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, A., Ramirez Barreto, E., Dias, A.G. et al. Explaining the Higgs decays at the LHC with an extended electroweak model. Eur. Phys. J. C 73, 2288 (2013). https://doi.org/10.1140/epjc/s10052-013-2288-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2288-y

Keywords

Navigation