Skip to main content
Log in

Hidden symmetries for ellipsoid–solitonic deformations of Kerr–Sen black holes and quantum anomalies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We prove the existence of hidden symmetries in the general relativity theory defined by exact solutions with generic off-diagonal metrics, nonholonomic (non-integrable) constraints, and deformations of the frame and linear connection structure. A special role in characterization of such spacetimes is played by the corresponding nonholonomic generalizations of Stackel–Killing and Killing–Yano tensors. There are constructed new classes of black hole solutions and we study hidden symmetries for ellipsoidal and/or solitonic deformations of “prime” Kerr–Sen black holes into “target” off-diagonal metrics. In general, the classical conserved quantities (integrable and not-integrable) do not transfer to the quantized systems and produce quantum gravitational anomalies. We prove that such anomalies can be eliminated via corresponding nonholonomic deformations of fundamental geometric objects (connections and corresponding Riemannian and Ricci tensors) and by frame transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Such higher order symmetries are called “hidden symmetries” and the corresponding holonomic (un-constrained) values are quadratic, or (in general) polynomial in momenta. In this work, we study more general gravitational nonlinear systems with non-integrable constraints and “nonholonomic hidden symmetries”.

  2. Such a distribution can be stated by an arbitrary function (or a set of functions) on V prescribing a vierbein structure \(e_{\ \alpha }^{\underline{\alpha }} \) following certain geometric principles. In modern gravity, it is largely used the so-called ADM (Arnowit–Deser–Misner) splitting, 3+1, see details in [19]. For our purposes, it is convenient to work with an alternative non-integrable 2+2 splitting, which allows us to decouple the Einstein equations and integrate them in “very” general forms [14, 15]. Such a technique of generating exact solutions cannot be elaborated working only with 3+1 decompositions.

  3. We shall use certain left “up” or “low” labels in order to emphasize that certain geometric objects are determined by another fundamental geometric object, for instance, that the torsion \({}^{\mathbf{D}}\mathcal{T}^{\alpha }\) is determined by d-connection D. We shall omit such labels if that will not result in ambiguities.

  4. Such sources should be defined in explicit form from certain additional suppositions on interactions of gravitational and matter fields; we omit such considerations in this work.

  5. η can be a solution of any three-dimensional gravitational solitonic stationary solitonic distribution and/or other nonlinear wave equations if we construct exact solutions with running in time solitons when are functions of type η(t,θ,φ), or η(ξ,θ,t), see [30].

  6. Such a geometric object is responsible for separability of (charged) Hamilton–Jacobi equation in the complete integrability of the motion of particles; with respect to anholonomic frames, the constructions can be generalized to include nonholonomic variables and non-integrable dynamics.

  7. Arranging the right side into groups with three, two and just one derivatives and consequently it is impossible to have compensations between them.

  8. If \(h_{3}^{\ast }=0\), or \(h_{4}^{\ast }=0\), the solutions can be constructed similarly (in certain cases, they can be transformed from one to another one via frame/coordinate transforms).

References

  1. K. Yano, Some remarks on tensor fields and curvature. Ann. Math. 55, 328–347 (1952)

    Article  MATH  Google Scholar 

  2. W. Chen, H. Lü, C.N. Pope, General Kerr–NUT–AdS metrics in all dimensions. Class. Quantum Gravity 23, 5323–5340 (2006)

    Article  ADS  MATH  Google Scholar 

  3. D.N. Page, D. Kubizňák, M. Vasudevan, P. Krtouš, Complete integrability of geodesic motion in general higher-dimensional rotating black hole spacetimes. Phys. Rev. Lett. 98, 061102 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Visinescu, Generalized Taub–NUT metrics and Killing–Yano tensors. J. Phys. A 33, 4383–4392 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Benenti, Intrinsic characterization of the variable separation in the Hamilton–Jacobi equations. J. Math. Phys. 38, 6578–6602 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V.P. Frolov, Applications of hidden symmetries to black hole physics. arXiv:1010.1792 [gr-qc]

  7. J.W. van Holten, Covariant Hamiltonian dynamics. Phys. Rev. D 75, 025027 (2007). arXiv:hep-th/0612216

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Yano, S. Bochner, Curvature and Betti Numbers. Annals of Mathematics Studies, vol. 32 (Princeton University Press, Princeton, 1953)

    MATH  Google Scholar 

  9. D. Kubiznak, H. Kunduri, Y. Yasui, Generalized Killing–Yano equations in D=5 gauges supergravity. Phys. Lett. B 678, 240–245 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Ahmedov, A. Aliev, Uniqueness of rotating charged black holes in five-dimensional minimal gauged supergravity. Phys. Lett. B 679, 396–400 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Houri, D. Kubizňák, C.M. Warnick, Y. Yasui, Generalized hidden symmetries and the Kerr–Sen black hole. J. High Energy Phys. 1007, 055 (2010)

    Article  ADS  Google Scholar 

  12. S. Vacaru, F.C. Popa, Dirac spinor waves and solitons in anisotropic Taub-NUT spaces. Class. Quantum Gravity 18, 4921–4938 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Vacaru, O. Tintareanu-Mircea, Anholonomic frames, generalized Killing equations, and anisotropic Taub NUT spinning spaces. Nucl. Phys. B 626, 239–264 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. Vacaru, On general solutions in Einstein gravity. Int. J. Geom. Methods Mod. Phys. 8, 9–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Vacaru, On general solutions in Einstein and high dimensional gravity. Int. J. Theor. Phys. 49, 884–913 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Vacaru, Einstein gravity as a nonholonomic almost Kähler geometry, Lagrange–Finsler variables, and deformation quantization. J. Geom. Phys. 60, 1289–1305 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S. Vacaru, Branes and quantization for an A-model complexification of Einstein gravity in almost Kähler variables. Int. J. Geom. Methods Mod. Phys. 6, 873–909 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Vacaru, Two-connection renormalization and nonholonomic gauge models of Einstein gravity. Int. J. Geom. Methods Mod. Phys. 7, 713–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973)

    Google Scholar 

  20. S.-Q. Wu, Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general non-extremal rotating charged black holes in minimal five-dimensional gauged supergravity. Phys. Ref. D 80, 084009 (2009)

    Article  ADS  Google Scholar 

  21. Z.W. Chong, M. Cvetic, H. Lu, C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity. Phys. Rev. Lett. 95, 161301 (2005)

    Article  ADS  Google Scholar 

  22. A. Strominger, Superstrings with torsion. Nucl. Phys. B 274, 253–284 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Agricola, The Srni lectures on non-integrable geometries with torsion. arXiv:math/0606705

  24. B. Carter, Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D 16, 3395–3414 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Ianuş, M. Visinescu, G.-E. Vîlcu, Conformal Killing–Yano tensors on manifolds with mixed 3-structures. SIGMA 5, 022 (2009)

    Google Scholar 

  26. M. Visinescu, Hidden conformal symmetries and quantum-gravitational anomalies. Europhys. Lett. 90, 41002 (2010)

    Article  ADS  Google Scholar 

  27. A. Sen, Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett. 69, 1006–1009 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. P.A. Blaga, C. Blaga, Bounded radial geodesics around a Kerr–Sen black hole. Class. Quantum Gravity 18, 3893–3905 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S.Q. Wu, X. Cai, Massive complex scalar field in the Kerr–Sen geometry: exact solution of wave equation and Hawking radiation. J. Math. Phys. 44, 1084–1088 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. S. Vacaru, D. Singleton, Warped solitonic deformations and propagation of black holes in 5D vacuum gravity. Class. Quantum Gravity 19, 3583–3602 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. P. Krtouš, D. Kubizňák, D.N. Page, V.P. Frolov, Killing–Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions. J. High Energy Phys. 02, 004 (2007)

    Article  ADS  Google Scholar 

  32. P. Krtouš, V.P. Frolov, D. Kubizňák, Hidden symmetries of higher dimensional black holes and uniqueness of the Kerr–NUT–(A)dS spacetime. Phys. Rev. D 78, 064022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  33. B. Carter, Killing tensor quantum numbers and conserved quantities in curved space. Phys. Rev. D 16, 3395–3414 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  34. Y. Brihaye, A. Chakbarati, D.H. Tchrakian, Particle-like solutions to higher order curvature Einstein–Yang–Mills systems in d dimensions. Class. Quantum Gravity 20, 2765–2784 (2003)

    Article  ADS  MATH  Google Scholar 

  35. Y. Brihaye, B. Hartmann, E. Radu, Cosmological solutions in a spontaneously broken gauge theory. Phys. Rev. Lett. 96, 071101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Visinescu, Covariant approach of the dynamics of particles in external gauge fields, Killing tensors and quantum gravitational anomalies. SIGMA 7, 037 (2011)

    MathSciNet  Google Scholar 

  37. S. Vacaru, Parametric nonholonomic frame transforms and exact solutions in gravity. Int. J. Geom. Methods Mod. Phys. 4, 1285–1334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Vacaru, Curve flows and solitonic hierarchies generated by Einstein metrics. Acta Appl. Math. [ACAP] 110, 73–107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Program IDEI, PN-II-ID-PCE-2011-3-0256. Author is grateful to N. Mavromatos, P. Stavrinos and M. Vişinescu for important discussions and kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Appendices

Appendix A: N-adapted coefficients for d-connections

For convenience, we present some necessary formulas from the geometry of N-anholonomic (pseudo) Riemannian spaces, see details in [15].

The coefficients of the Levi-Civita (LC) connection \(\nabla =\{{}_{\shortmid }\varGamma_{\ \alpha \beta }^{\gamma }\}\) for the metric (6) (computed with respect to N-adapted basis (2) and (3)) can be written in the form

$$ {} _{\shortmid }\varGamma_{\ \alpha \beta }^{\gamma }=\widehat{\boldsymbol{\Gamma}} _{\ \alpha \beta }^{\gamma }+Z_{\ \alpha \beta }^{\gamma }. $$
(45)

The value \(\widehat{\mathbf{D}}=\{\widehat{\boldsymbol{\Gamma}}_{\ \alpha \beta }^{\gamma }=(\widehat{L}_{jk}^{i},\widehat{L}_{bk}^{a},\widehat{C}_{jc}^{i}, \widehat{C}_{bc}^{a})\}\) with coefficients

(46)

defines the canonical distinguished connection (d-connection). By straightforward computations, we can check that it is metric compatible, \(\widehat{\mathbf{D}}\mathbf{g}=0\), and its torsion \(\mathcal{T}=\{\widehat{\mathbf{T}}_{\ \alpha \beta }^{\gamma }\equiv \widehat{\boldsymbol{\Gamma}}_{\ \alpha \beta }^{\gamma }-\widehat{\boldsymbol{\Gamma}}_{\ \beta \alpha }^{\gamma };\widehat{T}_{\ jk}^{i},\widehat{T}_{\ ja}^{i},\widehat{T}_{\ ji}^{a},\widehat{T}_{\ bi}^{a},\widehat{T}_{\ bc}^{a}\}\), is with zero horizontal and vertical coefficients, \(\widehat{T}_{\ jk}^{i}=0\) and \(\widehat{T}_{\ bc}^{a}=0\). There are also non-trivial hv-coefficients

(47)

The distortion tensor \(Z_{\ \alpha \beta }^{\gamma }\) in (45) is also constructed in a unique form from the coefficients of metric N-connection,

(48)

for \(\varXi_{jk}^{ih}=\frac{1}{2}(\delta_{j}^{i}\delta_{k}^{h}-g_{jk}g^{ih})\) and \({}^{\pm}\varXi_{cd}^{ab}=\frac{1}{2}(\delta_{c}^{a}\delta_{d}^{b}+h_{cd}h^{ab})\).

Any geometric and physical formulas for the connection ∇ can be equivalently redefined for the canonical d-connection \(\widehat{\mathbf{D}}\), and inversely, using (45) because all involved geometric objects (two different connections and the distorting tensor) are uniquely defined by the same metric structure.

Appendix B: Decoupling and integration of Einstein eqs.

We briefly summarize the results on generating off-diagonal solutions in gravity [14, 15].

Using the conditions of Lemma 2.1 and computing in explicit form the Ricci and Einstein tensors, we prove:

Theorem B.1

(Decoupling of equations)

The Einstein equations for \(\widehat{\mathbf{D}}\) (46) and ansatz for the metric g (15) with ω=1 and any general source \(\boldsymbol{\Upsilon}_{\ \delta }^{\alpha }\) (14) are

(49)

The system of partial differential equations (49) is with decoupling of equations (the “splitting” of equations is used as an equivalent one; we should not confuse this with the property of separation of variables). For simplicity, we can consider a subclass of solutions when for the chosen N-system of reference \(h_{a}^{\ast }\neq 0\).Footnote 8

Corollary B.1

The system of equations (49) for y 3=v, \(g_{i}=\epsilon_{i}e^{\psi (x^{k})}\) and \(h_{a}^{\ast }\neq 0\), Ψ 2≠0, Ψ 4≠0, can be written equivalently in the form

(50)

The systems of equations (49) and (50) can be integrated in general forms following the results of Theorem 2.3; we can generate solutions for the LC connection if the zero torsion conditions of Corollary 2.1 are satisfied.

Let us study the “vanishing torsion” conditions (19). For general sources, \(\boldsymbol{\Upsilon}_{\ \delta }^{\alpha }\), it is quite difficult to prove in an explicit analytic form that such equations have non-trivial solutions.

Corollary B.2

We can adapt the nonholonomic distributions for generic off-diagonal Einstein spaces with \(\boldsymbol{\Upsilon}_{\ \delta }^{\alpha }=\lambda \mathbf{\delta }_{\ \delta }^{\alpha }\), when Ψ 2=Ψ 4=λ, and parametrize the data (17) and (18) for the coefficients of metric ansatz in such a form that (19) determine some classes of non-trivial solutions, when the d-torsions (47) for \(\widehat{\mathbf{D}}\) are zero.

Proof

Let us consider a solution (17) and (18) when the coordinate system and boundary conditions are fixed in the form that \(\underline{h}_{4}(x^{k})=0\), 2 n k (x i)=0 and i 1 n j (x k)= j 2 n i (x k). In such cases, we must prove that h 4λ −1 e ϕ and w i = i ϕ/ϕ have for some classes of functions ϕ(x i,v), ϕ ≠0, certain non-trivial solutions of (19), i.e.

$$ w_{i}^{\ast }=\mathbf{e}_{i}\ln |h_{4}|\quad \mbox{and}\quad \partial_{i}w_{j}= \partial_{j}w_{i}. $$
(51)

Expressing h 4 and w i explicitly via ϕ, we get from (51) that ϕ ∗∗ i ϕϕ ( i ϕ)=0. As a particular case, these equations can be written in the form \(( \partial_{i}\phi /\phi^{\ast } )^{\ast }=w_{i}^{\ast }=0\), when w i = 0 w i (x k). Choosing \(\phi = {}^{0}\phi (x^{k}) \overline{\phi (}v)\), we generate solutions with separation of variables, 0 w i (x k)=ι∂ i 0 ϕ and \(\overline{\phi }^{\ast }=\iota^{-1}\overline{\phi }\), for a nonzero constant ι. In general, we can consider various types of nonholonomic constraints (19) for selecting from data (17) and (18) very different families of solutions in GR. □

Remark B.1

Integrating on variable y 3=φ and taking \(\underline{h}_{4}= {}^{0}h_{4}(\widetilde{x}^{i})\), ϵ i =1, \(g_{i}=\eta_{i}e^{\psi (\widetilde{x}^{k})}{} ^{0}g_{i}(\widetilde{x}^{k}), \eta_{i}=\epsilon_{i}e^{\psi (\widetilde{x}^{k})}\), ω=1, in coordinates \(\widetilde{u}^{\beta }\) (24) and for the “initial” data g α (25), the “one-Killing” off-diagonal solutions (17) and (18) for the Einstein spaces can be represented in the form

(52)

for, respectively, given \({}^{\circ }h_{4}(\widetilde{x}^{i}),\widehat{\varPhi }(\widetilde{x}^{i}),{}^{b}\rho (\widetilde{x}^{i})\) and chosen generating/ integration functions \(\phi (\widetilde{x}^{i},\varphi )\), \({}^{1}n_{k}(\widetilde{x}^{i}),{}^{2}n_{k}(\widetilde{x}^{i})\) subjected to the conditions (51).

To consider possible small nonholonomic deformations g α η g α is convenient to express the formulas (51) via polarization functions (27) when, for λ≠0, h a = h a η a = h a (1+χ a ). Using the second formula in (52), for h 4, we can express \(\phi =\ln \sqrt{|\lambda {}^{\circ }h_{4}\chi_{4}|} \) and consider for such classes of solutions a “new” generating function \(\chi_{4}(\widetilde{x}^{i},\varphi )\). The third formula for h 3 from that system of solutions allows us to express

$$ \chi_{3}=-1+ \bigl(\lambda \ ^{\circ }h_{3} \bigr)^{-1} \bigl[ \bigl( \ln \sqrt{|1-\chi_{4}|} \bigr)^{\ast } \bigr]^{2}. $$
(53)

We conclude that all v-coefficients of off-diagonal metrics and N-connections, see ansatz (15) (equivalently (16)) for the Einstein spaces with Killing symmetry on \(\partial /\partial \widetilde{y}^{4}\), up to arbitrary frame transforms, are functionally determined by χ 4, i.e. ϕ[χ 4], h a [χ 4], w i [χ 4], n k [χ 4].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacaru, S.I. Hidden symmetries for ellipsoid–solitonic deformations of Kerr–Sen black holes and quantum anomalies. Eur. Phys. J. C 73, 2287 (2013). https://doi.org/10.1140/epjc/s10052-013-2287-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2287-z

Keywords

Navigation