Skip to main content
Log in

Strange metals at finite ’t Hooft coupling

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper, we consider the AdS–Schwarzschild black hole in light-cone coordinates which exhibits non-relativistic z=2 Schrodinger symmetry. Then, we use the AdS/CFT correspondence to investigate the effect of finite-coupling corrections to two important properties of the strange metals which are the Ohmic resistivity and the inverse Hall angle. It is shown that the Ohmic resistivity and inverse Hall angle are linearly and quadratically temperature dependent in the case of \(\mathcal{R}^{4}\) corrections, respectively, while in the case of Gauss–Bonnet gravity, we find that the inverse Hall angle is quadratically temperature dependent and the Ohmic conductivity can never be linearly temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. One should notice that in the Schrödinger spacetime this part of the metric is very important because of the non-trivial Kalb–Ramond field [26].

  2. In AdS5×S 5 AdS black brane background, e ϕ is a constant and it can be absorbed in \(\mathcal{N}\).

  3. One may refer to [14] for more explanation of this point.

  4. We have assumed G xx =G yy =G zz .

  5. To compare the results, two plasmas can be taken to have the same temperatures. Then we express the results in terms of the temperature of hot plasma without any corrections, \(T_{\mathcal{R}^{4}}(1-k)=T\).

  6. It should be noticed that we are interested in the case of small temperature regime.

  7. We consider plasmas at fixed temperature, then express the results in terms of the temperature of hot plasma without any corrections, \(\frac{T_{\mathrm{GB}}}{\sqrt{N}}=T\).

  8. Certainly, this class must be study more in details and other properties should be investigated.

  9. One also finds the other choice in [24] as \(\tilde{A}=(\tilde{E}_{b}y+h_{+}(u))\,dx^{+}+h_{-}(u)\,dx^{-}+h_{y}(u)\,dy+(\tilde {B}_{b}y)\,dz\).

  10. Interestingly, the metric function G yy does not change in the presence of \(\mathcal{R}^{2}\) corrections i.e. G yy (u)=u 2.

  11. A 0, A 4, and A 8 depend on the electric field, Gauss–Bonnet coupling and parameter b.

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246

    Article  MathSciNet  ADS  Google Scholar 

  2. J. McGreevy, Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). arXiv:0909.0518

    Google Scholar 

  3. S.A. Hartnoll, Horizons, holography and condensed matter. arXiv:1106.4324

  4. N. Iqbal, H. Liu, M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions. arXiv:1110.3814

  5. G.R. Stewart, Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797 (2001) [Addendum: Rev. Mod. Phys. 78, 743 (2006)]

    Article  ADS  Google Scholar 

  6. R.A. Cooper, Y. Wang, B. Vignolle, O.J. Lipscombe, S.M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, N.E. Hussey, Anomalous criticality in the electrical resistivity of La2−x Sr x CuO4. Science 323, 603 (2009)

    Article  ADS  Google Scholar 

  7. S. Sachdev, Strange metals and the AdS/CFT correspondence. J. Stat. Mech. 1011, P11022 (2010). arXiv:1010.0682 [cond-mat.str-el]

    Article  Google Scholar 

  8. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrodinger symmetry. Phys. Rev. D 78, 046003 (2008). arXiv:0804.3972 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Maldacena, D. Martelli, Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry. J. High Energy Phys. 0810, 072 (2008). arXiv:0807.1100 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Alishahiha, O.J. Ganor, Twisted backgrounds, PP waves and nonlocal field theories. J. High Energy Phys. 0303, 006 (2003). arXiv:hep-th/0301080

    Article  MathSciNet  ADS  Google Scholar 

  12. W.D. Goldberger, AdS/CFT duality for non-relativistic field theory. J. High Energy Phys. 0903, 069 (2009). arXiv:0806.2867 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  13. J.L.F. Barbon, C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT. J. High Energy Phys. 0809, 030 (2008). arXiv:0806.3244 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  14. B.S. Kim, D. Yamada, Properties of Schroedinger black holes from AdS space. J. High Energy Phys. 1107, 120 (2011). arXiv:1008.3286 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, D. Vegh, Strange metal transport realized by gauge/gravity duality. Science 329, 1043 (2010)

    Article  ADS  Google Scholar 

  16. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, R. Meyer, Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys. 1011, 151 (2010). arXiv:1005.4690 [hep-th]

    Article  ADS  Google Scholar 

  17. R.C. Myers, S. Sachdev, A. Singh, Holographic quantum critical transport without self-duality. Phys. Rev. D 83, 066017 (2011). arXiv:1010.0443 [hep-th]

    Article  ADS  Google Scholar 

  18. S.S. Pal, Model building in AdS/CMT: DC conductivity and Hall angle. Phys. Rev. D 84, 126009 (2011). arXiv:1011.3117 [hep-th]

    Article  ADS  Google Scholar 

  19. B.-H. Lee, D.-W. Pang, C. Park, Strange metallic behavior in anisotropic background. J. High Energy Phys. 1007, 057 (2010). arXiv:1006.1719 [hep-th]

    Article  ADS  Google Scholar 

  20. R. Meyer, B. Gouteraux, B.S. Kim, Strange metallic behaviour and the thermodynamics of charged dilatonic black holes. Fortschr. Phys. 59, 741 (2011). arXiv:1102.4433 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  21. B.-H. Lee, D.-W. Pang, Notes on properties of holographic strange metals. Phys. Rev. D 82, 104011 (2010). arXiv:1006.4915 [hep-th]

    Article  ADS  Google Scholar 

  22. S.A. Hartnoll, J. Polchinski, E. Silverstein, D. Tong, Towards strange metallic holography

  23. B.S. Kim, E. Kiritsis, C. Panagopoulos, Holographic quantum criticality and strange metal transport. New J. Phys. 14, 043045 (2012). arXiv:1012.3464 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  24. K.-Y. Kim, D.-W. Pang, Holographic DC conductivities from the open string metric. J. High Energy Phys. 1109, 051 (2011). arXiv:1108.3791 [hep-th]

    Article  ADS  Google Scholar 

  25. M. Ali-Akbari, K.B. Fadafan, Conductivity at finite ’t Hooft coupling from AdS/CFT. arXiv:1008.2430 [hep-th]

  26. M. Ammon, C. Hoyos, A. O’Bannon, J.M.S. Wu, Holographic flavor transport in Schrodinger spacetime. J. High Energy Phys. 1006, 012 (2010). arXiv:1003.5913 [hep-th]

    Article  ADS  Google Scholar 

  27. A. Karch, A. O’Bannon, Metallic AdS/CFT. J. High Energy Phys. 0709, 024 (2007). arXiv:0705.3870 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N=6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). arXiv:0806.1218 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Pawelczyk, S. Theisen, AdS5×S5 black hole metric at O(α ′3). J. High Energy Phys. 9809, 010 (1998). hep-th/9808126

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Banks, M.B. Green, Non-perturbative effects in AdS(5)×S5 string theory and d=4 SUSY Yang–Mills. J. High Energy Phys. 9805, 002 (1998). arXiv:hep-th/9804170

    Article  MathSciNet  ADS  Google Scholar 

  31. S.S. Gubser, I.R. Klebanov, A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N=4 supersymmetric Yang–Mills theory. Nucl. Phys. B 534, 202 (1998). hep-th/9805156

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. R.G. Cai, Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining–deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001) [Erratum: Phys. Lett. B 542, 301 (2002)]. arXiv:hep-th/0109122

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S. Nojiri, S.D. Odintsov, (Anti-)de Sitter black holes in higher derivative gravity and dual conformal field theories. Phys. Rev. D 66, 044012 (2002). arXiv:hep-th/0204112

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank M. Ali-Akbari, M. Alishahiha and M. Sheikh-Jabbari for very useful discussions and especially thank Bom Soo Kim for reading the manuscript and useful comments. Also we are very grateful to and thank M. Sohani for carefully reading the draft. We would like to thank the referee of EPJC for giving constructive comments which helped improving the paper. This research was supported by Shahrood University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Bitaghsir Fadafan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadafan, K.B. Strange metals at finite ’t Hooft coupling. Eur. Phys. J. C 73, 2281 (2013). https://doi.org/10.1140/epjc/s10052-013-2281-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2281-5

Keywords

Navigation