Skip to main content
Log in

Top A FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the top forward–backward (FB) asymmetry at the Tevatron and top charge asymmetry at the LHC within chiral U(1)′ models with flavor-dependent U(1)′ charges and flavored Higgs fields, which were introduced in Ko et al. (J. High Energy Phys. 1201:147, 2012). In this model, one has to include the flavor-changing couplings of the Higgs bosons as well as the Z′ to the up-type quarks. The models could enhance not only the top forward–backward asymmetry at the Tevatron, but also the top charge asymmetry at LHC, without too large same-sign top-quark pair production rates. Also the \(m_{t\bar{t}}\) distribution at high \(m_{t\bar{t}}\) shows less deviations from the SM predictions. We identify parameter spaces for the U(1)′ gauge boson and (pseudo) scalar Higgs bosons where all the experimental data could be accommodated, including the case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We note that the relation is not valid for the other charge assignments.

  2. It is also true that one cannot write nonrenormalizable Yukawa interactions with the SM Higgs doublet only. It is essential to include the Higgs doublets with nonzero U(1)′ charges in order that one can write Yukawa couplings for the up-type quarks in this model.

  3. This assumption is not compulsory, since all the Higgs bosons might participate in the top-quark pair production in principle. We will keep only a few lightest (pseudo) scalar bosons in order to simplify the numerical analysis.

  4. There may be another possibility that the new particle is a heavier Higgs boson and the lightest Higgs boson has not been discovered yet because of suppression of its couplings to the SM particles. However, we do not consider this scenario in this work.

References

  1. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011). arXiv:1101.0034 [hep-ex]

    Article  ADS  Google Scholar 

  2. CDF Collaboration, CDF note 10436 (2011)

  3. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 112005 (2011). arXiv:1107.4995 [hep-ex]

    Article  ADS  Google Scholar 

  4. CDF Collaboration, CDF Conf. note 10807 (2012)

  5. O. Antunano, J.H. Kuhn, G. Rodrigo, Phys. Rev. D 77, 014003 (2008). arXiv:0709.1652 [hep-ph]

    Article  ADS  Google Scholar 

  6. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. D 84, 074004 (2011). arXiv:1106.6051 [hep-ph]

    Article  ADS  Google Scholar 

  7. W. Hollik, D. Pagani, Phys. Rev. D 84, 093003 (2011). arXiv:1107.2606 [hep-ph]

    Article  ADS  Google Scholar 

  8. J.H. Kuhn, G. Rodrigo, arXiv:1109.6830 [hep-ph]

  9. D. Choudhury, R.M. Godbole, R.K. Singh, K. Wagh, Phys. Lett. B 657, 69 (2007). arXiv:0705.1499 [hep-ph]

    Article  ADS  Google Scholar 

  10. S. Jung, H. Murayama, A. Pierce, J.D. Wells, Phys. Rev. D 81, 015004 (2010). arXiv:0907.4112 [hep-ph]

    Article  ADS  Google Scholar 

  11. K. Cheung, W.Y. Keung, T.C. Yuan, Phys. Lett. B 682, 287 (2009). arXiv:0908.2589 [hep-ph]

    Article  ADS  Google Scholar 

  12. J. Shu, T.M.P. Tait, K. Wang, Phys. Rev. D 81, 034012 (2010). arXiv:0911.3237 [hep-ph]

    Article  ADS  Google Scholar 

  13. A. Arhrib, R. Benbrik, C.H. Chen, Phys. Rev. D 82, 034034 (2010). arXiv:0911.4875 [hep-ph]

    Article  ADS  Google Scholar 

  14. I. Dorsner, S. Fajfer, J.F. Kamenik, N. Kosnik, Phys. Rev. D 81, 055009 (2010). arXiv:0912.0972 [hep-ph]

    Article  ADS  Google Scholar 

  15. D.W. Jung, P. Ko, J.S. Lee, S.h. Nam, Phys. Lett. B 691, 238 (2010). arXiv:0912.1105 [hep-ph]

    Article  ADS  Google Scholar 

  16. V. Barger, W.Y. Keung, C.T. Yu, Phys. Rev. D 81, 113009 (2010). arXiv:1002.1048 [hep-ph]

    Article  ADS  Google Scholar 

  17. Q.H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy, C.E.M. Wagner, Phys. Rev. D 81, 114004 (2010). arXiv:1003.3461 [hep-ph]

    Article  ADS  Google Scholar 

  18. B. Xiao, Y.k. Wang, S.h. Zhu, Phys. Rev. D 82, 034026 (2010). arXiv:1006.2510 [hep-ph]

    Article  ADS  Google Scholar 

  19. D.W. Jung, P. Ko, J.S. Lee, Phys. Lett. B 701, 248 (2011). arXiv:1011.5976 [hep-ph]

    Article  ADS  Google Scholar 

  20. D. Choudhury, R.M. Godbole, S.D. Rindani, P. Saha, Phys. Rev. D 84, 014023 (2011). arXiv:1012.4750 [hep-ph]

    Article  ADS  Google Scholar 

  21. K. Cheung, T.C. Yuan, Phys. Rev. D 83, 074006 (2011). arXiv:1101.1445 [hep-ph]

    Article  ADS  Google Scholar 

  22. M.I. Gresham, I.W. Kim, K.M. Zurek, Phys. Rev. D 84, 034025 (2011). arXiv:1102.0018 [hep-ph]

    Article  ADS  Google Scholar 

  23. B. Bhattacherjee, S.S. Biswal, D. Ghosh, Phys. Rev. D 83, 091501 (2011). arXiv:1102.0545 [hep-ph]

    Article  ADS  Google Scholar 

  24. V. Barger, W.Y. Keung, C.T. Yu, Phys. Lett. B 698, 243 (2011). arXiv:1102.0279 [hep-ph]

    Article  ADS  Google Scholar 

  25. B. Grinstein, A.L. Kagan, M. Trott, J. Zupan, Phys. Rev. Lett. 107, 012002 (2011). arXiv:1102.3374 [hep-ph]

    Article  ADS  Google Scholar 

  26. K.M. Patel, P. Sharma, J. High Energy Phys. 1104, 085 (2011). arXiv:1102.4736 [hep-ph]

    Article  ADS  Google Scholar 

  27. G. Isidori, J.F. Kamenik, Phys. Lett. B 700, 145 (2011). arXiv:1103.0016 [hep-ph]

    Article  ADS  Google Scholar 

  28. A.R. Zerwekh, Phys. Lett. B 704, 62 (2011). arXiv:1103.0956 [hep-ph]

    Article  ADS  Google Scholar 

  29. E.R. Barreto, Y.A. Coutinho, J. Sa Borges, Phys. Rev. D 83, 054006 (2011). arXiv:1103.1266 [hep-ph]

    Article  ADS  Google Scholar 

  30. R. Foot, Phys. Rev. D 83, 114013 (2011). arXiv:1103.1940 [hep-ph]

    Article  ADS  Google Scholar 

  31. Z. Ligeti, G.M. Tavares, M. Schmaltz, J. High Energy Phys. 1106, 109 (2011). arXiv:1103.2757 [hep-ph]

    Article  ADS  Google Scholar 

  32. J.A. Aguilar-Saavedra, M. Perez-Victoria, J. High Energy Phys. 1105, 034 (2011). arXiv:1103.2765 [hep-ph]

    Article  ADS  Google Scholar 

  33. M.I. Gresham, I.W. Kim, K.M. Zurek, Phys. Rev. D 83, 114027 (2011). arXiv:1103.3501 [hep-ph]

    Article  ADS  Google Scholar 

  34. J. Shu, K. Wang, G. Zhu, Phys. Rev. D 85, 034008 (2012). arXiv:1104.0083 [hep-ph]

    Article  ADS  Google Scholar 

  35. J.A. Aguilar-Saavedra, M. Perez-Victoria, Phys. Lett. B 701, 93 (2011). arXiv:1104.1385 [hep-ph]

    Article  ADS  Google Scholar 

  36. A.E. Nelson, T. Okui, T.S. Roy, Phys. Rev. D 84, 094007 (2011). arXiv:1104.2030 [hep-ph]

    Article  ADS  Google Scholar 

  37. S. Jung, A. Pierce, J.D. Wells, Phys. Rev. D 84, 055018 (2011). arXiv:1104.3139 [hep-ph]

    Article  ADS  Google Scholar 

  38. G. Zhu, Phys. Lett. B 703, 142 (2011). arXiv:1104.3227 [hep-ph]

    Article  ADS  Google Scholar 

  39. D.W. Jung, P. Ko, J.S. Lee, Phys. Rev. D 84, 055027 (2011). arXiv:1104.4443 [hep-ph]

    Article  ADS  Google Scholar 

  40. K.S. Babu, M. Frank, S.K. Rai, Phys. Rev. Lett. 107, 061802 (2011). arXiv:1104.4782 [hep-ph]

    Article  ADS  Google Scholar 

  41. D. Krohn, T. Liu, J. Shelton, L.T. Wang, Phys. Rev. D 84, 074034 (2011). arXiv:1105.3743 [hep-ph]

    Article  ADS  Google Scholar 

  42. A. Hektor, G. Hutsi, M. Kadastik, K. Kannike, M. Raidal, D.M. Straub, Phys. Rev. D 84, 031701 (2011). arXiv:1105.5644 [hep-ph]

    Article  ADS  Google Scholar 

  43. Y. Cui, Z. Han, M.D. Schwartz, J. High Energy Phys. 1107, 127 (2011). arXiv:1106.3086 [hep-ph]

    Article  ADS  Google Scholar 

  44. E. Gabrielli, M. Raidal, Phys. Rev. D 84, 054017 (2011). arXiv:1106.4553 [hep-ph]

    Article  ADS  Google Scholar 

  45. M. Duraisamy, A. Rashed, A. Datta, Phys. Rev. D 84, 054018 (2011). arXiv:1106.5982 [hep-ph]

    Article  ADS  Google Scholar 

  46. J.A. Aguilar-Saavedra, M. Perez-Victoria, J. High Energy Phys. 1109, 097 (2011). arXiv:1107.0841 [hep-ph]

    Article  ADS  Google Scholar 

  47. G.M. Tavares, M. Schmaltz, Phys. Rev. D 84, 054008 (2011). arXiv:1107.0978 [hep-ph]

    Article  ADS  Google Scholar 

  48. L. Vecchi, J. High Energy Phys. 1110, 003 (2011). arXiv:1107.2933 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  49. D.Y. Shao, C.S. Li, J. Wang, J. Gao, H. Zhang, H.X. Zhu, Phys. Rev. D 84, 054016 (2011). arXiv:1107.4012 [hep-ph]

    Article  ADS  Google Scholar 

  50. K. Blum, Y. Hochberg, Y. Nir, J. High Energy Phys. 1110, 124 (2011). arXiv:1107.4350 [hep-ph]

    Article  ADS  Google Scholar 

  51. M.I. Gresham, I.W. Kim, K.M. Zurek, Phys. Rev. D 85, 014022 (2012). arXiv:1107.4364 [hep-ph]

    Article  ADS  Google Scholar 

  52. M. Frank, A. Hayreter, I. Turan, Phys. Rev. D 84, 114007 (2011). arXiv:1108.0998 [hep-ph]

    Article  ADS  Google Scholar 

  53. H. Davoudiasl, T. McElmurry, A. Soni, Phys. Rev. D 85, 054001 (2012). arXiv:1108.1173 [hep-ph]

    Article  ADS  Google Scholar 

  54. S. Jung, A. Pierce, J.D. Wells, Phys. Rev. D 84, 091502 (2011). arXiv:1108.1802 [hep-ph]

    Article  ADS  Google Scholar 

  55. J.Y. Liu, Y. Tang, Y.L. Wu, J. Phys. G 39, 055003 (2012). arXiv:1108.5012 [hep-ph]

    Article  ADS  Google Scholar 

  56. K. Kolodziej, Phys. Lett. B 710, 671 (2012). arXiv:1110.2103 [hep-ph]

    Article  ADS  Google Scholar 

  57. J.N. Ng, P.T. Winslow, J. High Energy Phys. 1202, 140 (2012). arXiv:1110.5630 [hep-ph]

    Article  ADS  Google Scholar 

  58. K. Yan, J. Wang, D.Y. Shao, C.S. Li, Phys. Rev. D 85, 034020 (2012). arXiv:1110.6684 [hep-ph]

    Article  ADS  Google Scholar 

  59. D.W. Jung, P. Ko, J.S. Lee, Phys. Lett. B 708, 157 (2012). arXiv:1111.3180 [hep-ph]

    Article  ADS  Google Scholar 

  60. L. Wang, L. Wu, J.M. Yang, Phys. Rev. D 85, 075017 (2012). arXiv:1111.4771 [hep-ph]

    Article  ADS  Google Scholar 

  61. S.S. Biswal, S. Mitra, R. Santos, P. Sharma, R.K. Singh, M. Won, Phys. Rev. D 86, 014016 (2012). arXiv:1201.3668 [hep-ph]

    Article  ADS  Google Scholar 

  62. P. Ko, arXiv:1202.0367 [hep-ph]

  63. M.I. Gresham, I.-W. Kim, S. Tulin, K.M. Zurek, Phys. Rev. D 86, 034029 (2012). arXiv:1203.1320 [hep-ph]

    Article  ADS  Google Scholar 

  64. B. Grinstein, C.W. Murphy, D. Pirtskhalava, P. Uttayarat, J. High Energy Phys. 1208, 073 (2012). arXiv:1203.2183 [hep-ph]

    Article  ADS  Google Scholar 

  65. C. Han, N. Liu, L. Wu, J.M. Yang, Phys. Lett. B 714, 295 (2012). arXiv:1203.2321 [hep-ph]

    Article  ADS  Google Scholar 

  66. D. Duffty, Z. Sullivan, H. Zhang, J. High Energy Phys. 1206, 164 (2012). arXiv:1203.4889 [hep-th]

    Google Scholar 

  67. P. Ko, Y. Omura, C. Yu, Phys. Rev. D 85, 115010 (2012). arXiv:1108.0350 [hep-ph]

    Article  ADS  Google Scholar 

  68. P. Ko, Y. Omura, C. Yu, J. High Energy Phys. 1201, 147 (2012). arXiv:1108.4005 [hep-ph]

    Article  ADS  Google Scholar 

  69. P. Ko, Y. Omura, C. Yu, Nuovo Cimento C 035(3), 245 (2012). arXiv:1201.1352 [hep-ph]

    Google Scholar 

  70. P. Ko, Y. Omura and C. Yu. arXiv:1208.4675 [hep-ph]

  71. K.S. Babu, J. Julio, Y. Zhang, Nucl. Phys. B 858, 468 (2012). arXiv:1111.5021 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  72. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1108, 005 (2011). arXiv:1106.2142 [hep-ex]

    Article  ADS  Google Scholar 

  73. G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1204, 069 (2012). arXiv:1202.5520 [hep-ex]

    Article  ADS  Google Scholar 

  74. J. Cao, L. Wang, L. Wu, J.M. Yang, Phys. Rev. D 84, 074001 (2011). arXiv:1101.4456 [hep-ph]

    Article  ADS  Google Scholar 

  75. E.L. Berger, Q.H. Cao, C.R. Chen, C.S. Li, H. Zhang, Phys. Rev. Lett. 106, 201801 (2011). arXiv:1101.5625 [hep-ph]

    Article  ADS  Google Scholar 

  76. ATLAS Collaboration, ATLAS-CONF-2011-106 (2011)

  77. CMS Collaboration, CMS-PAS-TOP-11-030 (2011)

  78. CMS Collaboration, CMS-PAS-TOP-11-009 (2011)

  79. ATLAS Collaboration, ATLAS-CONF-2012-029 (2012)

  80. CDF Collaboration, CDF note 9913 (2009)

  81. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 704, 403 (2011). arXiv:1105.5384 [hep-ex]

    Article  ADS  Google Scholar 

  82. CMS Collaboration, CMS-PAS-TOP-11-024 (2011)

  83. ATLAS Collaboration, ATLAS-CONF-2012-024 (2012)

  84. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  85. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  86. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  87. Z. Chacko R, Franceschini and R. K. Mishra. arXiv:1209.3259 [hep-ph]

  88. J. Moffat, arXiv:1207.6015 [hep-ph]

  89. H.S. Cheon, S.K. Kang, arXiv:1207.1083 [hep-ph]

  90. S. Bar-Shalom, M. Geller, S. Nandi, A. Soni, arXiv:1208.3195 [hep-ph]

  91. M. Carena, I. Low, C.E.M. Wagner, J. High Energy Phys. 1208, 060 (2012). arXiv:1206.1082 [hep-ph]

    Article  ADS  Google Scholar 

  92. J. Alitti et al. (UA2 Collaboration), Z. Phys. C 49, 17 (1991)

    Article  Google Scholar 

  93. J. Alitti et al. (UA2 Collaboration), Nucl. Phys. B 400, 3 (1993)

    Article  ADS  Google Scholar 

  94. P. Ko, Y. Omura, C. Yu, Phys. Lett. B 710, 197 (2012). arXiv:1104.4066 [hep-ph]

    Article  ADS  Google Scholar 

  95. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1208, 110 (2012). arXiv:1205.3933 [hep-ex]

    ADS  Google Scholar 

  96. CMS Collaboration, CMS-PAS-SUS-12-017 (2012)

Download references

Acknowledgements

We thank the Korea Institute for Advanced Study for providing computing resources (KIAS Center for Advanced Computation Abacus System) for this work. This work is supported in part by Basic Science Research Program through NRF 2011-0022996 (CY), by NRF Research Grant 2012R1A2A1A01006053 (PK and CY), and by SRC program of NRF Grant No. 20120001176 through Korea Neutrino Research Center at Seoul National University (PK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaehyun Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, P., Omura, Y. & Yu, C. Top A FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets. Eur. Phys. J. C 73, 2269 (2013). https://doi.org/10.1140/epjc/s10052-012-2269-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2269-6

Keywords

Navigation