Skip to main content
Log in

Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the context of the dispersive model for non-perturbative corrections, we extend the leading renormalon subtraction to NNLO for the thrust distribution in e + e annihilation. Within this framework, using a NNLL+NNLO perturbative description and including bottom-quark mass effects to NLO, we analyse data in the centre-of-mass energy range \(\sqrt{s}=14\mbox{--}206~\mbox{GeV}\) in view of a simultaneous determination of the strong coupling constant and the non-perturbative parameter α 0. The fits are performed by matching the resummed and fixed-order predictions both in the R and the log-R matching schemes. The final values in the R scheme are \(\alpha_{s}(M_{Z}) = 0.1131^{+0.0028}_{-0.0022}\), \(\alpha_{0}(2~\mathrm{GeV}) = 0.538^{+0.102}_{-0.047}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Brandt, C. Peyrou, R. Sosnowski, A. Wroblewski, Phys. Lett. 12, 57 (1964)

    ADS  Google Scholar 

  2. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977)

    Article  ADS  Google Scholar 

  3. D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C 73, 409 (1997)

    Google Scholar 

  4. A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C 35, 457 (2004)

    Article  ADS  Google Scholar 

  5. P.D. Acton et al. (OPAL Collaboration), Z. Phys. C 59, 1 (1993)

    ADS  Google Scholar 

  6. G. Alexander et al. (OPAL Collaboration), Z. Phys. C 72, 191 (1996)

    ADS  Google Scholar 

  7. K. Ackerstaff et al. (OPAL Collaboration), Z. Phys. C 75, 193 (1997)

    Google Scholar 

  8. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 16, 185 (2000). hep-ex/0002012

    Article  ADS  Google Scholar 

  9. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 40, 287 (2005). hep-ex/0503051

    Article  ADS  Google Scholar 

  10. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 53, 21 (2008)

    Article  ADS  Google Scholar 

  11. M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 371, 137 (1996)

    Article  ADS  Google Scholar 

  12. M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 404, 390 (1997)

    Article  ADS  Google Scholar 

  13. M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 444, 569 (1998)

    Article  ADS  Google Scholar 

  14. P. Achard et al. (L3 Collaboration), Phys. Lett. B 536, 217 (2002). hep-ex/0206052

    Article  ADS  Google Scholar 

  15. P. Achard et al. (L3 Collaboration), Phys. Rep. 399, 71 (2004). hep-ex/0406049

    Article  ADS  Google Scholar 

  16. P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 456, 322 (1999)

    Article  ADS  Google Scholar 

  17. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 29, 285 (2003). hep-ex/0307048

    Article  ADS  Google Scholar 

  18. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 37, 1 (2004). hep-ex/0406011

    Article  ADS  Google Scholar 

  19. K. Abe et al. (SLD Collaboration), Phys. Rev. D 51, 962 (1995). hep-ex/9501003

    Article  ADS  Google Scholar 

  20. P. Pfeifenschneider et al. (JADE Collaboration), Eur. Phys. J. C 17, 19 (2000). hep-ex/0001055

    Article  ADS  Google Scholar 

  21. W. Braunschweig et al. (TASSO Collaboration), Z. Phys. C 47, 187 (1990)

    Google Scholar 

  22. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, J. High Energy Phys. 0711, 058 (2007). arXiv:0710.0346

    Article  ADS  Google Scholar 

  23. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, Phys. Rev. Lett. 99, 132002 (2007). arXiv:0707.1285

    Article  ADS  Google Scholar 

  24. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, J. High Energy Phys. 0712, 094 (2007). arXiv:0711.4711

    Article  ADS  Google Scholar 

  25. S. Weinzierl, J. High Energy Phys. 0907, 009 (2009). arXiv:0904.1145

    Article  ADS  Google Scholar 

  26. S. Weinzierl, J. High Energy Phys. 0906, 041 (2009). arXiv:0904.1077

    Article  ADS  Google Scholar 

  27. S. Weinzierl, Eur. Phys. J. C 71, 1565 (2011). arXiv:1011.6247

    ADS  Google Scholar 

  28. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, H. Stenzel, J. High Energy Phys. 0802, 040 (2008). arXiv:0712.0327

    Article  ADS  Google Scholar 

  29. T. Gehrmann, M. Jaquier, G. Luisoni, Eur. Phys. J. C 67, 57 (2010). arXiv:0911.2422

    Article  ADS  Google Scholar 

  30. C.J. Maxwell, K.E. Morgan, Nucl. Phys. B 858, 405 (2012). arXiv:1108.6204

    Article  ADS  MATH  Google Scholar 

  31. G. Dissertori et al., Phys. Rev. Lett. 104, 072002 (2010). arXiv:0910.4283

    Article  ADS  Google Scholar 

  32. J. Schieck, S. Bethke, S. Kluth, C. Pahl, Z. Trocsanyi, arXiv:1205.3714 [hep-ex]

  33. R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, J. High Energy Phys. 1011, 050 (2010). arXiv:1008.5313

    Article  ADS  Google Scholar 

  34. S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Nucl. Phys. B 407, 3 (1993)

    Article  ADS  Google Scholar 

  35. R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel, D. Wicke, J. High Energy Phys. 0312, 007 (2003). hep-ph/0312016

    Article  ADS  Google Scholar 

  36. Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, J. High Energy Phys. 9801, 011 (1998). hep-ph/9801324

    Article  ADS  Google Scholar 

  37. T. Becher, G. Bell, M. Neubert, Phys. Lett. B 704, 276 (2011). arXiv:1104.4108

    Article  ADS  Google Scholar 

  38. A. Banfi, G.P. Salam, G. Zanderighi, J. High Energy Phys. 0201, 018 (2002). hep-ph/0112156

    Article  ADS  Google Scholar 

  39. T. Gehrmann, G. Luisoni, H. Stenzel, Phys. Lett. B 664, 265 (2008). arXiv:0803.0695

    Article  ADS  Google Scholar 

  40. R.A. Davison, B.R. Webber, Eur. Phys. J. C 59, 13 (2009). arXiv:0809.3326. Erratum at URL: www.springerlink.com/content/dw40u58716261700/

    Article  ADS  Google Scholar 

  41. S. Bethke, S. Kluth, C. Pahl, J. Schieck (JADE Collaboration), Eur. Phys. J. C 64, 351 (2009). arXiv:0810.1389

    Article  ADS  Google Scholar 

  42. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, G. Luisoni, H. Stenzel, J. High Energy Phys. 0908, 036 (2009). arXiv:0906.3436

    Article  ADS  Google Scholar 

  43. G. Abbiendi et al. (OPAL Collaboration), arXiv:1101.1470

  44. T. Becher, M.D. Schwartz, J. High Energy Phys. 0807, 034 (2008). arXiv:0803.0342

    Article  ADS  Google Scholar 

  45. P.F. Monni, T. Gehrmann, G. Luisoni, J. High Energy Phys. 1108, 010 (2011). arXiv:1105.4560

    Article  ADS  Google Scholar 

  46. Y.T. Chien, M.D. Schwartz, J. High Energy Phys. 1008, 058 (2010). arXiv:1005.1644

    Article  ADS  Google Scholar 

  47. T. Becher, G. Bell, J. High Energy Phys. 1211, 126 (2012). arXiv:1210.0580

    Article  ADS  Google Scholar 

  48. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu, I.W. Stewart, Phys. Rev. D 83, 074021 (2011). arXiv:1006.3080

    Article  ADS  Google Scholar 

  49. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu, I.W. Stewart, Phys. Rev. D 86, 094002 (2012). arXiv:1204.5746

    Article  ADS  Google Scholar 

  50. Y.L. Dokshitzer, G. Marchesini, B.R. Webber, Nucl. Phys. B 469, 93 (1996). hep-ph/9512336

    Article  ADS  Google Scholar 

  51. Y.L. Dokshitzer, B.R. Webber, Phys. Lett. B 404, 321 (1997). hep-ph/9704298

    Article  ADS  Google Scholar 

  52. G.P. Korchemsky, G.F. Sterman, Nucl. Phys. B 555, 335 (1999). hep-ph/9902341

    Article  ADS  Google Scholar 

  53. G.P. Korchemsky, S. Tafat, J. High Energy Phys. 0010, 010 (2000). hep-ph/0007005

    Article  ADS  Google Scholar 

  54. E. Gardi, G. Grunberg, J. High Energy Phys. 9911, 016 (1999). hep-ph/9908458

    Article  MathSciNet  ADS  Google Scholar 

  55. E. Gardi, J. High Energy Phys. 0004, 030 (2000). hep-ph/0003179

    Article  ADS  Google Scholar 

  56. E. Gardi, J. Rathsman, Nucl. Phys. B 609, 123 (2001). hep-ph/0103217

    Article  ADS  Google Scholar 

  57. A.H. Hoang, I.W. Stewart, Phys. Lett. B 660, 483 (2008). arXiv:0709.3519

    Article  ADS  Google Scholar 

  58. T. Sjostrand, L. Lonnblad, S. Mrenna, P.Z. Skands, hep-ph/0308153

  59. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820

    Article  ADS  Google Scholar 

  60. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, J. High Energy Phys. 0101, 010 (2001). hep-ph/0011363

    Article  ADS  Google Scholar 

  61. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, hep-ph/0210213

  62. M. Bahr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Platzer, P. Richardson et al., Eur. Phys. J. C 58, 639 (2008). arXiv:0803.0883

    Article  ADS  Google Scholar 

  63. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009). arXiv:0811.4622

    Article  ADS  Google Scholar 

  64. C. Bignamini, F. Becattini, F. Piccinini, Eur. Phys. J. C 72, 2176 (2012). arXiv:1204.2300

    Article  ADS  Google Scholar 

  65. W. Bernreuther, A. Brandenburg, P. Uwer, Phys. Rev. Lett. 79, 189 (1997). hep-ph/9703305

    Article  ADS  Google Scholar 

  66. A. Brandenburg, P. Uwer, Nucl. Phys. B 515, 279 (1998). hep-ph/9708350

    Article  ADS  Google Scholar 

  67. G. Rodrigo, A. Santamaria, M.S. Bilenky, Phys. Rev. Lett. 79, 193 (1997). hep-ph/9703358

    Article  ADS  Google Scholar 

  68. P. Nason, C. Oleari, Nucl. Phys. B 521, 237 (1998). hep-ph/9709360

    Article  ADS  Google Scholar 

  69. S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349, 635 (1991)

    Article  ADS  Google Scholar 

  70. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  71. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  72. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979)

    Article  ADS  Google Scholar 

  73. S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 0307, 028 (2003). hep-ph/0306211

    Article  ADS  Google Scholar 

  74. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004). hep-ph/0404111

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 688, 101 (2004). hep-ph/0403192

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. R. Kelley, M.D. Schwartz, R.M. Schabinger, H.X. Zhu, Phys. Rev. D 84, 045022 (2011). arXiv:1105.3676

    Article  ADS  Google Scholar 

  77. A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh, S. Zuberi, J. High Energy Phys. 1108, 054 (2011). arXiv:1105.4628

    Article  ADS  Google Scholar 

  78. Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, Nucl. Phys. B 511, 396 (1998). Ibid. (Erratum) 593, 729 (2001). hep-ph/9707532

    Article  ADS  Google Scholar 

  79. Y.L. Dokshitzer, in Vancouver 1998, High Energy Physics, vol. 1 (1998), pp. 305–324. hep-ph/9812252

    Google Scholar 

  80. G.P. Salam, D. Wicke, J. High Energy Phys. 0105, 061 (2001). hep-ph/0102343

    Article  ADS  Google Scholar 

  81. V. Mateu, I.W. Stewart, J. Thaler, arXiv:1209.3781

  82. A. Denner, S. Dittmaier, T. Gehrmann, C. Kurz, Phys. Lett. B 679, 219 (2009). arXiv:0906.0372

    Article  ADS  Google Scholar 

  83. A. Denner, S. Dittmaier, T. Gehrmann, C. Kurz, Nucl. Phys. B 836, 37 (2010). arXiv:1003.0986

    Article  ADS  MATH  Google Scholar 

  84. S. Bethke, Nucl. Phys. Proc. Suppl. 222–224, 94 (2012)

    Article  Google Scholar 

  85. B. Webber, in Workshop on Precision Measurements of α s , pp. 44–45. arXiv:1110.0016

Download references

Acknowledgements

We are grateful to Günther Dissertori, Gavin Salam and Hasko Stenzel for valuable discussions. We thank Carlo Oleari for providing us with an up-to-date version of the code Zbb4, and Andreas Papaefstathiou for helpful discussions about Herwig++. G.L. would like to thank the Institute for Theoretical Physics, University of Zurich for the warm hospitality while part of this work was carried out.

G.L. was supported by the British Science and Technology Facilities Council (STFC) and by the Alexander von Humboldt Foundation, in the framework of the Sofja Kovaleskaja Award Project “Advanced Mathematical Methods for Particle Physics”, endowed by the German Federal Ministry of Education and Research. T.G. and P.F.M. were supported by the Swiss National Science Foundation (SNF) under grant 200020-138206 and the European Commission through the LHCPhenoNet network under contract PITN-GA-2010-264564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Francesco Monni.

Appendix: Explicit resummation formulae

Appendix: Explicit resummation formulae

In the present section we report the full resummation formulae used in the main text. The QCD β-function is defined by the renormalisation group equation for the QCD coupling constant

(A.1)

where the first two coefficients read

(A.2)

Following these conventions, the perturbative functions h i (α s L) have the following expressions [34, 45], as a function of \(\lambda=\frac{\alpha_{s}(\mu)}{\pi}\beta_{0}\log N\):

(A.3)
(A.4)
(A.5)

The resummation coefficients read

(A.6a)
(A.6b)
(A.6c)
(A.6d)

Additional contributions to the functions g i (α s L) (8) arise from the function H(1,α s (Q)) which accounts for hard virtual corrections as well as the hard collinear \(\tilde{J} (1, \alpha_{s}(\sqrt{\frac{N_{0}}{N}}Q) )\) and soft \(\tilde{S} (1,\alpha_{s}(\frac{N_{0}Q}{N}) )\) constant functions. The latter functions contribute to the perturbative logarithmic structure since their strong couplings are evaluated at the collinear (\(\sqrt{\frac{N_{0}}{N}}Q\)) and soft (\(\frac {N_{0}Q}{N}\)) scales, respectively. Their perturbative expansions can be found for example in the appendix of [44, 45].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Luisoni, G. & Monni, P.F. Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution. Eur. Phys. J. C 73, 2265 (2013). https://doi.org/10.1140/epjc/s10052-012-2265-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2265-x

Keywords

Navigation