Skip to main content
Log in

The new look pMSSM with neutralino and gravitino LSPs

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of ∼225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing E T ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of ∼5–20 fb−1 at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are ≲700–800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Note that the analysis in [102] indicates that no qualitative changes in the constraints occur for the energy range relevant to our model set.

  2. The lower bound on the \(\tilde{\chi}_{1}^{0}\) mass from collider and other data is approximately 7 GeV [34].

  3. Inclusion of the \(t\bar{t} + 2\) jets background is not expected to alter our results. We have checked this explicitly for the case of the jets + MET analysis, and expect that it will hold for the other analyses as well.

  4. Very recently, ATLAS, CMS AND LHCb have presented a combined upper limit on the B s μ + μ branching fraction of 4.2×10−9 at the 95 % CL [131]. This new bound would exclude 6035 (7147) models within our neutralino (gravitino) model set.

References

  1. For an overview of MSSM physics and phenomenology, see M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N=1 Supersymmetry in High Energy Physics (World Scientific, Hackensack, 2004), 555 pp.

  2. H. Baer, X. Tata, Weak Scale Supersymmetry: From Superfields to Scattering Events (Cambridge Univ. Press, Cambridge, 2006), 537 pp.

    Book  MATH  Google Scholar 

  3. S.P. Martin, in Perspectives on Supersymmetry II, ed. by G.L. Kane, pp. 1–153. arXiv:hep-ph/9709356

  4. H.K. Dreiner, H.E. Haber, S.P. Martin, Phys. Rep. 494, 1 (2010). arXiv:0812.1594 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  5. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  6. D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J.D. Lykken, L.-T. Wang, Phys. Rep. 407, 1 (2005). arXiv:hep-ph/0312378

    Article  ADS  Google Scholar 

  7. L. Pape, D. Treille, Rep. Prog. Phys. 69, 2843 (2006)

    Article  ADS  Google Scholar 

  8. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  9. S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]

  10. For a recent overview, see talks by R. Bruneliere (ATLAS) and M. Stoye (CMS) given at La Thuile 2012, Aosta Valley, Italy, 26 Feb.–3 Mar. 2012

  11. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  12. E. Cremmer, P. Fayet, L. Girardello, Phys. Lett. B 122, 41 (1983)

    Article  ADS  Google Scholar 

  13. G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). arXiv:hep-ph/9801271

    Article  ADS  Google Scholar 

  14. M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53, 2658 (1996). arXiv:hep-ph/9507378

    Article  ADS  Google Scholar 

  15. J. Alwall, P. Schuster, N. Toro, Phys. Rev. D 79, 075020 (2009). arXiv:0810.3921 [hep-ph]

    Article  ADS  Google Scholar 

  16. D.S.M. Alves, E. Izaguirre, J.G. Wacker, J. High Energy Phys. 1110, 012 (2011). arXiv:1102.5338 [hep-ph]

    Article  ADS  Google Scholar 

  17. D. Alves et al. (LHC New Physics Working Group Collaboration), arXiv:1105.2838 [hep-ph]

  18. A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  19. C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, J. High Energy Phys. 0902, 023 (2009). arXiv:0812.0980 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  20. J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Eur. Phys. J. C 71, 1697 (2011). arXiv:1009.2539 [hep-ph]

    Article  ADS  Google Scholar 

  21. J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Phys. Rev. D, submitted. arXiv:1103.1697 [hep-ph]

  22. S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi, L. Pape, M. Pierini, H.B. Prosper et al., J. High Energy Phys. 1202, 075 (2012). arXiv:1109.5119 [hep-ph]

    Article  ADS  Google Scholar 

  23. A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726 [hep-ph]

    Article  ADS  Google Scholar 

  24. B.C. Allanach, A.J. Barr, A. Dafinca, C. Gwenlan, J. High Energy Phys. 1107, 104 (2011). arXiv:1105.1024 [hep-ph]

    Article  ADS  Google Scholar 

  25. S.S. AbdusSalam, Phys. Lett. B 705, 331 (2011). arXiv:1106.2317 [hep-ph]

    Article  ADS  Google Scholar 

  26. S.S. AbdusSalam, B.C. Allanach, H.K. Dreiner, J. Ellis, U. Ellwanger, J. Gunion, S. Heinemeyer, M. Kraemer et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph]

    Article  ADS  Google Scholar 

  27. M. Carena, J. Lykken, S. Sekmen, N.R. Shah, C.E.M. Wagner, arXiv:1205.5903 [hep-ph]

  28. A. Strubig, S. Caron, M. Rammensee, arXiv:1202.6244 [hep-ph]

  29. G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512 [hep-ex]

  30. ATLAS Note, Prospects for supersymmetry discovery based on inclusive searches at a 7 TeV centre-of-mass energy with the ATLAS detector. Tech. Rep. ATL-PHYS-PUB-2010-010, CERN, Geneva (2010)

  31. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, arXiv:1206.5800 [hep-ph]

  32. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, Phys. Rev. D, arXiv:1206.5800

  33. For a review, see G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036

  34. K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  35. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  36. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635 (2007). hep-ph/0609292

    ADS  Google Scholar 

  37. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. G.B. Gelmini, arXiv:1106.6278 [hep-ph]

  39. A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Nucl. Phys. B 526, 136 (1998). Erratum-ibid. B 582, 759 (2000). hep-ph/9801329

    Article  ADS  Google Scholar 

  40. J.L. Feng, S. Su, F. Takayama, Phys. Rev. D 70, 075019 (2004). hep-ph/0404231

    Article  ADS  Google Scholar 

  41. Y. Santoso, in Karlsruhe 2007, SUSY 2007, pp. 930–933. arXiv:0709.3952 [hep-ph]

  42. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph]

    Article  ADS  Google Scholar 

  43. K. Hagiwara, K. Mawatari, Y. Takaesu, Eur. Phys. J. C 71, 1529 (2011). arXiv:1010.4255 [hep-ph]

    ADS  Google Scholar 

  44. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin et al., hep-ph/9908288

  45. A. Pukhov, hep-ph/0412191

  46. K. Jedamzik, Phys. Rev. D 74, 103509 (2006). hep-ph/0604251

    Article  ADS  Google Scholar 

  47. M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 71, 083502 (2005). astro-ph/0408426

    Article  ADS  Google Scholar 

  48. T. Moroi, H. Murayama, M. Yamaguchi, Phys. Lett. B 303, 289 (1993)

    Article  ADS  Google Scholar 

  49. M. Fujii, T. Yanagida, Phys. Lett. B 549, 273 (2002). hep-ph/0208191

    Article  ADS  Google Scholar 

  50. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  51. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1005.4133 [hep-ph]

  52. C.B. Dover, T.K. Gaisser, G. Steigman, Phys. Rev. Lett. 42, 1117 (1979)

    Article  ADS  Google Scholar 

  53. E. Nardi, E. Roulet, Phys. Lett. B 245, 105 (1990)

    Article  ADS  Google Scholar 

  54. J. Kang, M.A. Luty, S. Nasri, J. High Energy Phys. 0809, 086 (2008). hep-ph/0611322

    Article  ADS  Google Scholar 

  55. C. Jacoby, S. Nussinov, arXiv:0712.2681 [hep-ph]

  56. M. Kusakabe, T. Takesako, Phys. Rev. D 85, 015005 (2012). arXiv:1112.0860 [hep-ph]

    Article  ADS  Google Scholar 

  57. For some early work, see V.M. Chechetkin, M.Y. Khlopov, M.G. Sapozhnikov, Riv. Nuovo Cimento 5, N-10 (1982)

    Google Scholar 

  58. I.V. Falomkin, G.B. Pontecorvo, M.G. Sapozhnikov, M.Y. Khlopov, F. Balestra, G. Piragino, Nuovo Cimento A 79, 193 (1984). [Yad. Fiz. 39, 990 (1984)]

    Article  ADS  Google Scholar 

  59. M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138, 265 (1984)

    Article  ADS  Google Scholar 

  60. F. Balestra, Y.A. Batusov, G. Bendiscioli, M.P. Bussa, L. Busso, I.V. Falomkin, L. Ferrero, V. Filippini et al., Lett. Nuovo Cimento 41, 223 (1984)

    Article  ADS  Google Scholar 

  61. D. Lindley, Astrophys. J. 294, 1 (1985)

    Article  ADS  Google Scholar 

  62. J.R. Ellis, D.V. Nanopoulos, S. Sarkar, Nucl. Phys. B 259, 175 (1985)

    Article  ADS  Google Scholar 

  63. R. Juszkiewicz, J. Silk, A. Stebbins, Phys. Lett. B 158, 463 (1985)

    Article  ADS  Google Scholar 

  64. J. Audouze, D. Lindley, J. Silk, Astrophys. J. 293, L53 (1985)

    Article  ADS  Google Scholar 

  65. D. Lindley, Phys. Lett. B 171, 235 (1986)

    Article  ADS  Google Scholar 

  66. M. Kawasaki, K. Sato, Phys. Lett. B 189, 23 (1987)

    Article  ADS  Google Scholar 

  67. M.Y. Khlopov, V.M. Chechetkin, Fiz. èlem. častic At. âdra 18, 627 (1987)

    Google Scholar 

  68. R.J. Scherrer, M.S. Turner, Astrophys. J. 331, 19 (1988). Astrophys. J. 331, 33 (1988)

    Article  ADS  Google Scholar 

  69. Y.L. Levitan, I.M. Sobol, M.Y. Khlopov, V.M. Chechetkin, Sov. J. Nucl. Phys. 47, 109 (1988). [Yad. Fiz. 47, 168 (1988)]

    Google Scholar 

  70. S. Dimopoulos, R. Esmailzadeh, L.J. Hall, G.D. Starkman, Astrophys. J. 330, 545 (1988)

    Article  ADS  Google Scholar 

  71. S. Dimopoulos, R. Esmailzadeh, L.J. Hall, G.D. Starkman, Nucl. Phys. B 311, 699 (1989)

    Article  ADS  Google Scholar 

  72. M.H. Reno, D. Seckel, Phys. Rev. D 37, 3441 (1988)

    Article  ADS  Google Scholar 

  73. J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos, S. Sarkar, Nucl. Phys. B 373, 399 (1992)

    Article  ADS  Google Scholar 

  74. M. Kawasaki, T. Moroi, Prog. Theor. Phys. 93, 879 (1995). hep-ph/9403364, hep-ph/9403061

    Article  ADS  Google Scholar 

  75. R.J. Protheroe, T. Stanev, V.S. Berezinsky, Phys. Rev. D 51, 4134 (1995). astro-ph/9409004

    Article  ADS  Google Scholar 

  76. M.Y. Khlopov, Y.L. Levitan, E.V. Sedelnikov, I.M. Sobol, Phys. At. Nucl. 57, 1393 (1994). [Yad. Fiz. 57, 1466 (1994)]

    Google Scholar 

  77. E.V. Sedelnikov, S.S. Filippov, M.Y. Khlopov, Phys. At. Nucl. 58, 235 (1995). [Yad. Fiz. 58, 280 (1995)]

    Google Scholar 

  78. E. Holtmann, M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 60, 023506 (1999). hep-ph/9805405

    Article  ADS  Google Scholar 

  79. K. Jedamzik, Phys. Rev. D 70, 083510 (2004). astro-ph/0405583

    Article  ADS  Google Scholar 

  80. K. Jedamzik, Phys. Rev. D 70, 063524 (2004). astro-ph/0402344

    Article  ADS  Google Scholar 

  81. K. Jedamzik, K.-Y. Choi, L. Roszkowski, R. Ruiz de Austri, J. Cosmol. Astropart. Phys. 0607, 007 (2006). hep-ph/0512044

    Article  ADS  Google Scholar 

  82. M. Kusakabe, T. Kajino, G.J. Mathews, Phys. Rev. D 74, 023526 (2006). astro-ph/0605255

    Article  ADS  Google Scholar 

  83. M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida, G.J. Mathews, Phys. Rev. D 76, 121302 (2007). arXiv:0711.3854 [astro-ph]

    Article  ADS  Google Scholar 

  84. C. Bird, K. Koopmans, M. Pospelov, Phys. Rev. D 78, 083010 (2008). hep-ph/0703096

    Article  ADS  Google Scholar 

  85. T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, M. Yamanaka, Phys. Rev. D 76, 125023 (2007). arXiv:0704.2914 [hep-ph]

    Article  ADS  Google Scholar 

  86. K. Jedamzik, Phys. Rev. D 77, 063524 (2008). arXiv:0707.2070 [astro-ph]

    Article  ADS  Google Scholar 

  87. M. Pospelov, J. Pradler, F.D. Steffen, J. Cosmol. Astropart. Phys. 0811, 020 (2008). arXiv:0807.4287 [hep-ph]

    Article  ADS  Google Scholar 

  88. K. Kohri, Y. Santoso, Phys. Rev. D 79, 043514 (2009). arXiv:0811.1119 [hep-ph]

    Article  ADS  Google Scholar 

  89. M. Pospelov, J. Pradler, Phys. Rev. D 82, 103514 (2010). arXiv:1006.4172 [hep-ph]

    Article  ADS  Google Scholar 

  90. R.H. Cyburt, J. Ellis, B.D. Fields, F. Luo, K.A. Olive, V.C. Spanos, J. Cosmol. Astropart. Phys. 1010, 032 (2010). arXiv:1007.4173 [astro-ph.CO]

    Article  ADS  Google Scholar 

  91. T. Jittoh, K. Kohri, M. Koike, J. Sato, K. Sugai, M. Yamanaka, K. Yazaki, Phys. Rev. D 84, 035008 (2011). arXiv:1105.1431 [hep-ph]

    Article  ADS  Google Scholar 

  92. D.A. Vasquez, A. Belikov, A. Coc, J. Silk, E. Vangioni, arXiv:1208.0443 [astro-ph.CO]

  93. D. Cumberbatch, K. Ichikawa, M. Kawasaki, K. Kohri, J. Silk, G.D. Starkman, Phys. Rev. D 76, 123005 (2007). arXiv:0708.0095 [astro-ph]

    Article  ADS  Google Scholar 

  94. S. Bailly, K. Jedamzik, G. Moultaka, Phys. Rev. D 80, 063509 (2009). arXiv:0812.0788 [hep-ph]

    Article  ADS  Google Scholar 

  95. K. Kohri, T. Takahashi, Phys. Lett. B 682, 337 (2010). arXiv:0909.4610 [hep-ph]

    Article  ADS  Google Scholar 

  96. M. Kaplinghat, A. Rajaraman, Phys. Rev. D 74, 103004 (2006). astro-ph/0606209

    Article  ADS  Google Scholar 

  97. K. Kohri, F. Takayama, AIP Conf. Proc. 903, 587 (2007). hep-ph/0611016

    Article  ADS  Google Scholar 

  98. K. Jedamzik, J. Cosmol. Astropart. Phys. 0803, 008 (2008). arXiv:0710.5153 [hep-ph]

    Article  ADS  Google Scholar 

  99. M. Kusakabe, T. Kajino, T. Yoshida, G.J. Mathews, Phys. Rev. D 80, 103501 (2009). arXiv:0906.3516 [hep-ph]

    Article  ADS  Google Scholar 

  100. T. Kanzaki, M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 76, 105017 (2007). arXiv:0705.1200 [hep-ph]

    Article  ADS  Google Scholar 

  101. G.D. Kribs, I.Z. Rothstein, Phys. Rev. D 55, 4435 (1997). [Erratum-ibid. 56, 1822 (1997). hep-ph/9610468]

    Article  ADS  Google Scholar 

  102. X.-L. Chen, M. Kamionkowski, Phys. Rev. D 70, 043502 (2004). astro-ph/0310473

    Article  ADS  Google Scholar 

  103. M.V. Sazhin, O.S. Sazhina, U. Chadayammuri, arXiv:1109.2258 [astro-ph.CO]

  104. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, M. Viel, J. Cosmol. Astropart. Phys. 0905, 012 (2009). arXiv:0812.0010 [astro-ph]

    Article  ADS  Google Scholar 

  105. K. Sigurdson, M. Kamionkowski, Phys. Rev. Lett. 92, 171302 (2004). astro-ph/0311486

    Article  ADS  Google Scholar 

  106. G. Aad, et al. (The ATLAS Collaboration), doi:10.1016/j.physletb.2012.06.013

  107. See talk given by U. Langenegger (CMS), CERN seminar, 28 Feb. 2012

  108. R. Aaij, et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]

  109. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). hep-ph/0603175

    Article  ADS  Google Scholar 

  110. J. Conway, PGS4, Pretty Good Detector Simulation. http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs.html

  111. G. Aad, et al. (ATLAS Collaboration), arXiv:1109.6572 [hep-ex]

  112. G. Aad et al. (Atlas Collaboration), J. High Energy Phys. 1111, 099 (2011). arXiv:1110.2299 [hep-ex]

    Article  ADS  Google Scholar 

  113. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 012006 (2012). arXiv:1109.6606 [hep-ex]

    Article  ADS  Google Scholar 

  114. G. Aad, et al. (ATLAS Collaboration), arXiv:1110.6189 [hep-ex]

  115. ATLAS Collaboration, ATLAS-CONF-2012-033

  116. ATLAS Collaboration, ATLAS-CONF-2012-037

  117. ATLAS Collaboration, ATLAS-CONF-2012-041

  118. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997). arXiv:hep-ph/9610490

    ADS  Google Scholar 

  119. W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515, 3 (1998). arXiv:hep-ph/9710451

    Article  ADS  Google Scholar 

  120. M. Spira, arXiv:hep-ph/0211145

  121. T. Plehn, Czechoslov. J. Phys. 55, B213 (2005). arXiv:hep-ph/0410063

    Google Scholar 

  122. CMS Collaboration, CMS PAS SUS-11-006

  123. G. Aad, et al. (ATLAS Collaboration), arXiv:1112.3832 [hep-ex]

  124. CMS Collaboration, CMS PAS SUS-11-020

  125. G. Aad, et al. (ATLAS Collaboration), arXiv:1203.6193 [hep-ex]

  126. A.L. Read, J. Phys. G 28, 2693 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  127. T. Gleisberg, S. Höche, F. Krauss, A. Schalicke, S. Schumann, J.-C. Winter, J. High Energy Phys. 0402, 056 (2004). hep-ph/0311263

    Article  ADS  Google Scholar 

  128. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009)

    Article  ADS  Google Scholar 

  129. S. Höche, F. Krauss, S. Schumann, F. Siegert, J. High Energy Phys. 0905, 053 (2009)

    Article  Google Scholar 

  130. S. Höche, S. Schumann, F. Siegert, Phys. Rev. D 81, 034026 (2010)

    Article  ADS  Google Scholar 

  131. See talk given by M. Patel, LHCb Collaboration, PLHC2012, Vancouver, BC, June 4–9, 2012

  132. S. Chatrchyan, et al. (CMS Collaboration), arXiv:1202.4083 [hep-ex]

  133. S. Chatrchyan, et al. (CMS Collaboration), arXiv:1205.0272 [hep-ex]

  134. See the contribution by G. Polesello and T. Rizzo in “Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report,” G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, D. Albornoz Vasquez, B. C. Allanach, A. Alloul et al., arXiv:1203.1488 [hep-ph]

  135. M. Altunay et al. (Open Science Grid Collaboration), J. Grid Comput. 9, 201 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to John Conway for providing an updated version of PGS, and for discussions with J. Conley, R. Cotta, T. Eifert, J. Gainer, M.P. Le, and T. Plehn. S.H.’s work was supported in part by the National Science Foundation, grant NSF-PHY-0705682 (the LHC Theory Initiative). This research used the Open Science Grid production infrastructure [135].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ismail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill-Rowley, M.W., Hewett, J.L., Hoeche, S. et al. The new look pMSSM with neutralino and gravitino LSPs. Eur. Phys. J. C 72, 2156 (2012). https://doi.org/10.1140/epjc/s10052-012-2156-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2156-1

Keywords

Navigation