Skip to main content
Log in

Massive and massless spin-1 particles with gauge symmetry without Stueckelberg fields

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In order to generate mass for an abelian spin-1 vector field while preserving gauge invariance we couple it to a symmetric tensor. The derivative coupling includes up to three derivatives. We show that unitarity, causality and absence of Stueckelberg (compensating) fields single out a unique model up to trivial field redefinitions. The model contains one massive and one massless spin-1 particle. It is shown by means of a master action to be dual to the direct sum of a Maxwell plus a Maxwell–Proca theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In the rest of this section we always take f=m and d=m 2/4 for simplicity. No essential difference appears in the general case.

  2. A similar master action can be defined to prove the duality between the TMBF model of [5, 1113] and the Maxwell–Proca theory. Introducing an auxiliary vector field B μ in order to lower the order of the kinetic term for the antisymmetric field B μν we have

    $$ \mathcal{L}_M = -\frac{1}{4} F_{\mu\nu}^2(A) - \frac{1}{2} B^{\mu}B_{\mu} + \frac{1}{2} T_{\mu}\bigl(B^{\mu}+ m A^{\mu}\bigr) $$
    (61)

    where T μ=ϵ μναβ ν B αβ . Integrating over B μ we derive the TMBF model while integrating over B μν we have the Stueckelberg form of the Maxwell–Proca theory.

References

  1. P. Higgs, Phys. Lett. 12, 132 (1964)

    ADS  Google Scholar 

  2. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Ruegg, M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265–3348 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Cremmer, J. Scherk, Nucl. Phys. B 72, 117–124 (1974)

    Article  ADS  Google Scholar 

  6. A. Aurilia, Y. Takahashi, Prog. Theor. Phys. 66, 693 (1981)

    Article  ADS  Google Scholar 

  7. T.J. Allen, M.J. Bowick, A. Lahiri, Mod. Phys. Lett. A 6, 559 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. Amorim, J. Barcelos-Neto, Mod. Phys. Lett. A 10, 917–924 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Freedman, P.K. Townsend, Nucl. Phys. B 177, 282 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Henneaux, V.E.R. Lemes, C.A.G. Sasaki, S.P. Sorella, O.S. Ventura, L.C.Q. Vilar, Phys. Lett. B 410, 195–202 (1997)

    Article  ADS  Google Scholar 

  11. A. Lahiri, Generating vector boson masses. hep-th/9301060 (1993)

  12. A. Lahiri, Phys. Rev. D 55, 5045–5050 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Lahiri, Phys. Rev. D 63, 105002 (2001)

    Article  ADS  Google Scholar 

  14. J. Barcelos-Neto, S. Rabello, Z. Phys. C 74, 715–719 (1997)

    Article  Google Scholar 

  15. A. Khoudeir, R. Montemayor, L.F. Urrutia, Phys. Rev. D 78, 065041 (2008)

    Article  ADS  Google Scholar 

  16. D. Dalmazi, E.L. Mendonça, Phys. Lett. B 707, 409–414 (2012)

    Article  ADS  Google Scholar 

  17. J. Schwinger, Particles, Sources and Fields, vol. 1 (1998)

    Google Scholar 

  18. D.G. Boulware, S. Deser, Phys. Lett. B 40, 227–229 (1972)

    ADS  Google Scholar 

  19. P. van Nieuwenhuizen, Nucl. Phys. B 60, 478 (1973)

    Article  ADS  Google Scholar 

  20. B. Podolsky, Phys. Rev. 62, 68 (1942)

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Dalmazi, R.C. Santos, Phys. Rev. D 84, 045027 (2011)

    Article  ADS  Google Scholar 

  22. S. Deser, R. Jackiw, Phys. Lett. B 139, 371 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Botta Cantcheff, J.A. Helayel-Neto, The doublet extension of tensor gauge potentials and a reassessment of the non-Abelian topological mass mechanism. arXiv:1112.4301 [hep-th]

  24. P. Arias, Spin-2 in (2+1)-dimensions. Ph.D. thesis, Simon Bolivar U., 1994. gr-qc/9803083 (in Spanish)

Download references

Acknowledgements

We thank Alvaro de S. Dutra for helpful discussions. This work is partially supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dalmazi.

Appendices

Appendix A

Following closely the notation of [24] we display here the rank-4 projection operators \(P_{JJ}^{(s)}\) and transition operators \(P_{WS}^{(0)},P_{SW}^{(0)}\) which appear in (14):

(65)
(66)
(67)
(68)

where the rank-2 spin-1 and spin-0 projection operators are given by

$$ \theta_{\alpha\beta} = ( \eta_{\alpha\beta} - \omega_{\alpha \beta} ), \qquad\omega_{\alpha\beta} = \frac{\partial _{\alpha} \partial _{\beta}}{\Box }. $$
(69)

In order to check the operator G −1 given in (14) the reader can use the algebra

$$ \bigl( P_{IJ}^{(s)} \bigr)_{\lambda\mu\alpha\beta} \bigl( P_{LK}^{(r)} \bigr)^{\alpha\beta\gamma\delta} = \delta^{sr} \delta_{JL} \bigl( P_{IK}^{(s)} \bigr)_{\lambda\mu}^{\quad \gamma\delta}. $$
(70)

Appendix B

Assuming c 4≠0 here we show that the spin-2 pole of G −1 at c 4□−d=0 represents a ghost. The relevant piece of A(k) regarding the residue at k 2=−m 2=−d/c 4, see (14), (20), (19), and (29) is given by

$$ A(k) = - \frac{i}{2} \frac{J_{\mu\nu}^* ( P_{SS}^{(2)} )_{\mu\nu\gamma\delta}J^{\gamma\beta}}{c_4(k^2 + m^2)}. $$
(71)

Using the general decomposition of a symmetric tensor in momentum space: \(J_{\mu\nu} = k_{\mu}J_{\nu} + k_{\nu}J_{\mu} + J_{\mu\nu}^{T} \) with \(k^{\mu}J_{\mu\nu}^{T} = 0 = k^{\nu}J_{\mu\nu}^{T}\) we write

$$ J^*J \equiv J_{\mu\nu}^* \bigl( P_{SS}^{(2)} \bigr)_{\mu\nu\gamma\delta}J^{\gamma\beta} = \bigl( J_{\mu\nu}^T \bigr)^* J_T^{\mu\nu} - \frac{ J^*_T J_T }{D-1} $$
(72)

where \(J_{T} = (J_{T})^{\mu}_{\,\,\,\, \mu}\). Consequently, the imaginary part of the residue of A(k) at k 2=−m 2 is given by

$$ R_m^{(s=2)} = - \frac{J^* J }{2 c_4}. $$
(73)

It can be shown that \(J_{T}^{*}J_{T} > 0 \) at any dimension D>2 and \(J_{T}^{*}J_{T} = 0 \) at D=2. Since d>0, see (38), the absence of tachyons (m 2=d/c 4>0) requires c 4>0. Thus, R m <0 and we end up with a spin-2 ghost. Likewise one can check that spin-0 poles of G −1 at K=0 lead at least to one ghost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalmazi, D. Massive and massless spin-1 particles with gauge symmetry without Stueckelberg fields. Eur. Phys. J. C 72, 2145 (2012). https://doi.org/10.1140/epjc/s10052-012-2145-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2145-4

Keywords

Navigation