Skip to main content
Log in

Higgs signal in chargino-neutralino production at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We have analyzed the prospect of detecting a Higgs signal in mSUGRA/cMSSM based Supersymmetric (SUSY) model via chargino-neutralino (\({\tilde{\chi}}^{\pm}_{1}\tilde{\chi}^{0}_{2}\)) production at 8 TeV and 14 TeV LHC energies. The signal is studied in the channel following the decays, \({\tilde{\chi}}^{\pm}_{1} \to W^{\pm} \tilde{\chi}^{0}_{1}\), \(\tilde{\chi}^{0}_{2} \to \tilde{\chi}^{0}_{1} h\) and \(h \to b \bar{b}\). In this analysis reconstruction of the Higgs mass out of two b jets plays a very crucial role in determining the signal to background ratio. We follow two techniques to reconstruct the Higgs mass: (A) adding momenta of two identified b jets, (B) jet substructure technique. In addition, imposing a certain set of selection cuts we observe that the significance is better for the method (B). We find that a signal can be observed for the Higgs mass ∼125 GeV with an integrated luminosity 100 fb−1 for both 8 TeV and 14 TeV LHC energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Note that we have taken the finite width effects of W boson into account in our simulation. This results in a tail in the distribution in processes like Wh and \(t\bar{t}\). This forced us to opt for a higher value for selection cut.

References

  1. S. Chatrchyan et al. (The CMS Collaboration), arXiv:1207.7235 [hep-ex]

  2. G. Aad et al. (The ATLAS Collaboration), arXiv:1207.7214

  3. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  4. A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173, and references therein

    Article  ADS  Google Scholar 

  5. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85 075010 (2012). arXiv:1112.3017

    Article  ADS  Google Scholar 

  6. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon Phys. Lett. B 708, 162–169 (2012). arXiv:1112.3028

    Article  ADS  Google Scholar 

  7. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, arXiv:1112.3645

  8. The CMS Collaboration, CMS-PAS-SUS-:12-005 (2012)

  9. G. Aad et al. (ATLAS Collaboration), arXiv:1206.1760 [hep-ex]

  10. H. Baer, M. Bisset, X. Tata, J. Woodside, Phys. Rev. D 46, 303 (1992)

    Article  ADS  Google Scholar 

  11. H. Baer, M. Bisset, C. Kao, X. Tata, Phys. Rev. D 50, 316 (1994)

    Article  ADS  Google Scholar 

  12. A. Datta, A. Djouadi, M. Guchait, Y. Mambrini, Phys. Rev. D 65, 015007 (2002)

    Article  ADS  Google Scholar 

  13. A. Datta, A. Djouadi, M. Guchait, F. Moortgat, Nucl. Phys. B 681, 31 (2004)

    Article  ADS  Google Scholar 

  14. S. Gori, P. Schwaller, C.E.M. Wagner, Phys. Rev. D 83, 115022 (2011)

    Article  ADS  Google Scholar 

  15. S. Mrenna, arXiv:1110.4078

  16. H. Baer, V. Barger, S. Kraml, A. Lessa, W. Sreethawong, X. Tata, arXiv:1201.5382

  17. H. Baer, V. Barger, A. Lessa, W. Sreethawong, X. Tata, arXiv:1201.2949

  18. P. Byakti, D. Ghosh, arXiv:1204.0415

  19. S. Heinemeyer, F.v.d. Pahlen, H. Rzehak, C. Schappacher, arXiv:1201.6305

  20. A. Arbey, F. Mahmoudi, Comput. Phys. Commun. 182, 1582 (2011)

    Article  ADS  Google Scholar 

  21. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175

    Article  ADS  Google Scholar 

  22. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J. High Energy Phys. 0307, 001 (2003)

    Article  ADS  Google Scholar 

  23. S. Hoche, F. Kraus, N. Lavesson, L. Lonnbald, M. Mangano, arXiv:hep-ph/0602031

  24. M. Cacciari, G.P. Salam, G. Soyez, Phys. Lett. B 641, 57 (2006). arXiv:hep-ph/0512210

    Article  ADS  Google Scholar 

  25. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). arXiv:hep-ph/9707323

    Article  ADS  Google Scholar 

  26. H.L. Lai et al. (CTEQ Collaboration), Eur. Phys. J. C 12, 375 (2000)

    Article  ADS  Google Scholar 

  27. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635–644 (2007)

    ADS  Google Scholar 

  28. CMS Collaboration Report NO.CMS-PAS-BTV-11-001

  29. M. Guchait, D. Sengupta, Phys. Rev. D 84, 055010 (2011). arXiv:1102.4785

    Article  ADS  Google Scholar 

  30. D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, arXiv:1205.2283

  31. R.M. Chatterjee, M. Guchait, D. Sengupta, arXiv:1206.5770

  32. A. Abdesallam et al., Eur. Phys. J. C 71, 1661 (2011)

    Article  ADS  Google Scholar 

  33. J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008)

    Article  ADS  Google Scholar 

  34. A. Knutsson, talk given in MB & UE meeting, CERN, 17th June, 2011

  35. W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492, 51 (1997)

    ADS  Google Scholar 

  36. N. Kidonakis, arXiv:1109.3231

  37. D. Ghosh, M. Guchait, D. Sengupta, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipan Sengupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Guchait, M. & Sengupta, D. Higgs signal in chargino-neutralino production at the LHC. Eur. Phys. J. C 72, 2141 (2012). https://doi.org/10.1140/epjc/s10052-012-2141-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2141-8

Keywords

Navigation