Skip to main content
Log in

Heavy scalar tau decays in the complex MSSM: a full one-loop analysis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We evaluate all two-body decay modes of the heavy scalar tau in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) and no generation mixing. The evaluation is based on a full one-loop calculation of all decay channels, also including hard and soft QED radiation. The renormalization of the relevant sectors is briefly reviewed. The dependence of the heavy scalar tau decay on the relevant cMSSM parameters is analyzed numerically, including also the decay to Higgs bosons and another scalar lepton or to a tau and the lightest neutralino. We find sizable contributions to many partial decay widths and branching ratios. They are mostly of \(\mathcal{O}(5\mbox{--}10~\%)\) of the tree-level results, but can go up to 20 %. These contributions are potentially important for the correct interpretation of scalar tau decays at the LHC and, if kinematically allowed, at the ILC or CLIC. The evaluation of the branching ratios of the heavy scalar tau will be implemented into the Fortran code FeynHiggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. Scalar taus can also be produced directly at the LHC, see for instance Ref. [10], where, however, only cross sections for a lighter stau where evaluated numerically.

  2. It should be noted that the purely loop induced decay channels \(\tilde{\tau}^{-}_{2}\to\tilde{\tau}^{-}_{1}\gamma \) have been neglected because they yield exactly zero, see Sect. 3 for further details.

  3. The unitary matrix \({\mathbf{U}}_{\tilde{\tau}}\) can be expressed by a mixing angle and a corresponding phase. Then the counterterm δY τ can be related to the counterterms of the mixing angle and the phase (see Ref. [45]).

  4. We consider only the cMSSM, where in the SM part the neutrino is massless and does not have any Majorana mass terms. However, the argument for not renormalizing any off-diagonal parameter is indenpendent of the nature of (s)neutrino mass terms.

  5. Corresponding to the convention used in FeynArts/FormCalc, we exchanged in the charged part the positive Higgs fields with the negative ones, which is in contrast to Ref. [39]. As we keep the definition of the matrix \({\mathbf{M}}_{\phi^{\pm}\phi ^{\pm}}\) used in [39] the transposed matrix will appear in the expression for \({\mathbf{M}}_{H^{\pm}G^{\pm}}^{\mathrm{diag}}\).

  6. Similar divergences appearing in the on-shell renormalization in the sbottom sector, occurring for “maximal sbottom mixing”, have been observed and discussed in Refs. [4042].

  7. In Ref. [61] it was also suggested that the numerically most stable result is obtained via the renormalization of one chargino and two neutralinos. However, in our approach, this choice leads to IR divergences, since the chargino mass changes (from the tree-level mass to the one-loop pole mass) by a finite shift due to the renormalization procedure. Using the shifted mass for the external chargino, but the tree-level mass for internal charginos results in IR divergences. On the other hand, in general, inserting the shifted chargino mass everywhere yields UV divergences. Consequently, we stick to our choice of imposing on-shell conditions for the two charginos and one neutralino.

  8. We found that using loop corrected Higgs boson masses in the loops leads to a UV divergent result.

  9. From a technical point of view, the W /G H transitions have been absorbed into the respective counterterms, while the Z/Gh n transitions have been calculated explicitly.

  10. Equation (78) has been deduced via

    (79)
  11. It should be noted that we had to use \(\overline{\mathrm {DR}}\) masses everywhere for our comparison.

  12. As default value within FeynHiggs, μ R =m t is used.

  13. Here and below we round most of the values to one GeV.

  14. It should be noted that a calculation very close to threshold requires the inclusion of additional (non-relativistic) contributions, which is beyond the scope of this paper. Consequently, very close to threshold our calculation (at tree or loop level) does not provide a very accurate description of the decay width.

  15. Again we note that we do not investigate the decays of \(\tilde{\tau }^{+}_{2}\) here, which would correspond to an analysis of \(\mathcal{CP}\)-asymmetries, which is beyond the scope of this paper.

References

  1. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  2. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  3. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)

    Google Scholar 

  4. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  5. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  6. A. Pilaftsis, Phys. Rev. D 58, 096010 (1998). arXiv:hep-ph/9803297

    Article  ADS  Google Scholar 

  7. A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373

    Article  ADS  Google Scholar 

  8. A. Pilaftsis, C. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371

    Article  ADS  Google Scholar 

  9. S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059

    Article  ADS  Google Scholar 

  10. J. Lindert, F. Steffen, M. Trenkel, J. High Energy Phys. 1108, 151 (2011). arXiv:1106.4005 [hep-ph]

    Article  ADS  Google Scholar 

  11. G. Aad et al. (The ATLAS Collaboration) arXiv:0901.0512

  12. G. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    Article  ADS  Google Scholar 

  13. TESLA Technical Design Report (TESLA Collaboration), Part 3, Physics at an e + e Linear Collider. arXiv:hep-ph/0106315, see: tesla.desy.de/new_pages/TDR_CD/start.html

  14. K. Ackermann et al. DESY-PROC-2004-01

  15. J. Brau et al. (ILC Collaboration), ILC Reference Design Report Volume 1—Executive Summary. arXiv:0712.1950 [physics.acc-ph]

  16. G. Aarons et al. (ILC Collaboration), International Linear Collider Reference Design Report Volume 2: Physics at the ILC. arXiv:0709.1893 [hep-ph]

  17. E. Accomando et al. (CLIC Physics Working Group). arXiv:hep-ph/0412251; The CLIC CDR can be found at https://edms.cern.ch/document/1180032

  18. G. Weiglein et al. (LHC/ILC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364

    Article  ADS  Google Scholar 

  19. A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph]

    Article  ADS  Google Scholar 

  20. A. De Roeck, J. Ellis, S. Heinemeyer, CERN Cour. 49(10), 27 (2009)

    Google Scholar 

  21. A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod, A. Sopczak, Z. Phys. C 76, 549 (1997). arXiv:hep-ph/9701336

    Article  Google Scholar 

  22. A. Bartl, H. Eberl, K. Hidaka, S. Kraml, T. Kon, W. Majerotto, W. Porod, Y. Yamada, Phys. Lett. B 460, 157 (1999). arXiv:hep-ph/9904417

    Article  ADS  Google Scholar 

  23. A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod, Eur. Phys. J. C 2, 6 (2000). arXiv:hep-ph/0002115

    Google Scholar 

  24. M. Mühlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  25. A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Lett. B 538, 137 (2002). arXiv:hep-ph/0204071

    Article  ADS  Google Scholar 

  26. A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Rev. D 66, 115009 (2002). arXiv:hep-ph/0207186

    Article  ADS  Google Scholar 

  27. L. Selbuz, Z. Aydin, Turk. J. Phys. 33, 1 (2009). arXiv:0808.2540 [hep-ph]

    Google Scholar 

  28. S. Kraml, D. Nhung, J. High Energy Phys. 0802, 061 (2008). arXiv:0712.1986 [hep-ph]

    Article  ADS  Google Scholar 

  29. J. Guasch, W. Hollik, J. Sola, J. High Energy Phys. 0210, 040 (2002). arXiv:hep-ph/0207364

    Article  ADS  Google Scholar 

  30. A. Arhrib, R. Benbrik, Phys. Rev. D 71, 095001 (2005). arXiv:hep-ph/0412349

    Article  ADS  Google Scholar 

  31. H. Hlucha, H. Eberl, W. Frisch, arXiv:1104.2151 [hep-ph]

  32. S. Choi, H.-U. Martyn, P. Zerwas, Eur. Phys. J. C 44, 175 (2005). arXiv:hep-ph/0508021

    Article  ADS  Google Scholar 

  33. T. Gajdosik, R. Godbole, S. Kraml, J. High Energy Phys. 0409, 051 (2004). arXiv:hep-ph/0405167

    Article  ADS  Google Scholar 

  34. H. Dreiner, O. Kittel, S. Kulkarni, A. Marold, Phys. Rev. D 83, 095012 (2011). arXiv:1011.2449 [hep-ph]

    Article  ADS  Google Scholar 

  35. O. Kittel, A. Pilaftsis, Nucl. Phys. B 856, 682 (2012). arXiv:1108.3314 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  36. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320; see www.feynhiggs.de

    Article  ADS  MATH  Google Scholar 

  37. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  38. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  39. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  40. S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82, 075010 (2010). arXiv:1007.0689 [hep-ph]

    Article  ADS  Google Scholar 

  41. S. Heinemeyer, H. Rzehak, C. Schappacher, PoSCHARGED 2010, 039 (2010). arXiv:1012.4572 [hep-ph]

    Google Scholar 

  42. T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, arXiv:1111.7289 [hep-ph]

  43. S. Heinemeyer, F.V.D. Pahlen, C. Schappacher, Eur. Phys. J. C 72, 1892 (2012). arXiv:1112.0760 [hep-ph]

    Article  ADS  Google Scholar 

  44. S. Heinemeyer, C. Schappacher, Eur. Phys. J. C 72, 1905 (2012). arXiv:1112.2830 [hep-ph]

    Article  ADS  Google Scholar 

  45. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300 (2007). arXiv:0705.0746 [hep-ph]

    Article  ADS  Google Scholar 

  46. A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod, Y. Yamada, Phys. Rev. D 59, 115007 (1999). arXiv:hep-ph/9806299

    Article  ADS  Google Scholar 

  47. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. Lett. 78, 3626 (1997). arXiv:hep-ph/9612363

    Article  ADS  Google Scholar 

  48. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. D 57, 4179 (1998). arXiv:hep-ph/9710438

    Article  ADS  Google Scholar 

  49. W. Hollik, H. Rzehak, Eur. Phys. J. C 32, 127 (2003). arXiv:hep-ph/0305328

    Article  ADS  Google Scholar 

  50. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114

    Article  ADS  Google Scholar 

  51. R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  52. R. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  53. S. Dimopoulos, S. Thomas, Nucl. Phys. B 465, 23 (1996). arXiv:hep-ph/9510220

    Article  ADS  Google Scholar 

  54. D. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389

    Article  ADS  Google Scholar 

  55. M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245

    Article  ADS  Google Scholar 

  56. A. Fowler, PhD Thesis, Durham University, UK, September (2010)

  57. A. Fowler, G. Weiglein, J. High Energy Phys. 1001, 108 (2010). arXiv:0909.5165 [hep-ph]

    Article  ADS  Google Scholar 

  58. T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002). arXiv:hep-ph/0203159

    Article  Google Scholar 

  59. T. Fritzsche, Diploma thesis, Institut für Theoretische Physik, Universität Karlsruhe, Germany, December (2000). See: www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml

  60. T. Fritzsche, PhD thesis, Cuvillier Verlag, Göttingen (2005). ISBN 3-86537-577-4

  61. A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, arXiv:1107.5218 [hep-ph]

  62. N. Baro, F. Boudjema, Phys. Rev. D 80, 076010 (2009). arXiv:0906.1665 [hep-ph]

    Article  ADS  Google Scholar 

  63. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  ADS  Google Scholar 

  64. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  65. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349. The program, the user’s guide and the MSSM model files are available via. www.feynarts.de

    Article  ADS  MATH  Google Scholar 

  66. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  67. F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561 (1999). arXiv:hep-ph/9806451

    Article  ADS  MATH  Google Scholar 

  68. W. Siegel, Phys. Lett. B 84, 193 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  69. D. Capper, D. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980)

    Article  ADS  Google Scholar 

  70. D. Stöckinger, J. High Energy Phys. 0503, 076 (2005). arXiv:hep-ph/0503129

    Article  ADS  Google Scholar 

  71. W. Hollik, D. Stöckinger, Phys. Lett. B 634, 63 (2006). arXiv:hep-ph/0509298

    Article  ADS  Google Scholar 

  72. A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph]

    Google Scholar 

  73. S. Dittmaier, Nucl. Phys. B 675 (2003). arXiv:0308.3246 [hep-ph]

  74. W. Beenakker, A. Denner, Nucl. Phys. B 338, 349 (1990)

    Article  ADS  Google Scholar 

  75. The couplings can be found in the files MSSM.ps.gz and HMix.ps.gz as Part of the FeynArts Package. [63, 64, 65]

  76. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  77. LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

  78. LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

  79. The TEVNPH Working Group (CDF and D. Collaborations). arXiv:1203.3774 [hep-ex]

  80. ATLAS Collaboration, arXiv:1202.1408 [hep-ex]

  81. S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]

  82. J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983)

    Article  ADS  Google Scholar 

  83. M. Claudson, L. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983)

    Article  ADS  Google Scholar 

  84. C. Kounnas, A. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984)

    Article  ADS  Google Scholar 

  85. J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988)

    Article  ADS  Google Scholar 

  86. J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294

    Article  ADS  Google Scholar 

  87. P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199 (1994). arXiv:hep-ph/9403306

    Article  ADS  Google Scholar 

  88. A. Strumia, Nucl. Phys. B 482, 24 (1996). arXiv:hep-ph/9604417

    Article  ADS  Google Scholar 

  89. M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B 255, 413 (1985)

    Article  ADS  Google Scholar 

  90. D. Demir, O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314

    Article  ADS  Google Scholar 

  91. D. Chang, W. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999). Erratum-ibid. 83, 3972 (1999). arXiv:hep-ph/9811202

    Article  ADS  Google Scholar 

  92. A. Pilaftsis, Phys. Lett. B 471, 174 (1999). arXiv:hep-ph/9909485

    Article  ADS  Google Scholar 

  93. O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Phys. Rev. D 70, 016003 (2004). arXiv:hep-ph/0402023

    Article  ADS  Google Scholar 

  94. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 416, 345 (1998). arXiv:hep-ph/9707437

    Article  ADS  Google Scholar 

  95. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 425, 322 (1998). arXiv:hep-ph/9711322

    Article  ADS  Google Scholar 

  96. P. Nath, Phys. Rev. Lett. 66, 2565 (1991)

    Article  ADS  Google Scholar 

  97. Y. Kizukuri, N. Oshimo, Phys. Rev. D 46, 3025 (1992)

    Article  ADS  Google Scholar 

  98. T. Ibrahim, P. Nath, Phys. Lett. B 418, 98 (1998). arXiv:hep-ph/9707409

    Article  MathSciNet  ADS  Google Scholar 

  99. T. Ibrahim, P. Nath, Phys. Rev. D 57, 478 (1998). Erratum-ibid. D 58, 019901 (1998); Erratum-ibid. D 60, 079903 (1998); Erratum-ibid. 60, 119901 (1999). arXiv:hep-ph/9708456

    Article  ADS  Google Scholar 

  100. M. Brhlik, G. Good, G. Kane, Phys. Rev. D 59, 115004 (1999). arXiv:hep-ph/9810457

    Article  ADS  Google Scholar 

  101. S. Abel, S. Khalil, O. Lebedev, Nucl. Phys. B 606, 151 (2001). arXiv:hep-ph/0103320

    Article  ADS  Google Scholar 

  102. Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 1008, 062 (2010). arXiv:1006.1440 [hep-ph]

    Article  ADS  Google Scholar 

  103. V. Barger, T. Falk, T. Han, J. Jiang, T. Li, T. Plehn, Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Campanario, T. Hahn, W. Hollik, O. Kittel, K. Kovarik, F. von der Pahlen, H. Rzehak and G. Weiglein for helpful discussions. We furthermore thank H. Eberl for assistance with the code SFOLD and corresponding discussions. The work of S.H. was supported in part by CICYT (grant FPA 2010-22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Heinemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemeyer, S., Schappacher, C. Heavy scalar tau decays in the complex MSSM: a full one-loop analysis. Eur. Phys. J. C 72, 2136 (2012). https://doi.org/10.1140/epjc/s10052-012-2136-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2136-5

Keywords

Navigation