Skip to main content
Log in

Dynamic canonical and microcanonical transition matrix analyses of critical behavior

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By monitoring the sampling of states with different magnetizations in transition matrix procedures a family of accurate and easily implemented techniques are constructed that automatically control the variation of the temperature or energy as the calculation proceeds. The accuracy of these methods for a single Markov chain exceeds that of standard transition matrix procedures that accumulate elements from multiple chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Srinivasan, Importance sampling: Applications in Communications (Springer-Verlag, New York, 2002)

  2. B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)

    Article  ADS  Google Scholar 

  3. B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)

    Article  ADS  Google Scholar 

  4. B.A. Berg, U. Hansmann, T. Neuhaus, Phys. Rev. B 47, 497 (1993)

    Article  ADS  Google Scholar 

  5. U.H. Hansmann, Y. Okamoto, J. Comp. Chem. 14, 1333 (1993)

    Article  Google Scholar 

  6. W. Janke, Physica A 254, 164 (1998)

    Article  ADS  Google Scholar 

  7. B.A. Berg, Fields Institute Communications 26, 1 (2000)

    Google Scholar 

  8. T. Lu, D.O. Yevick, B. Hamilton, D. Dumas, M. Reimer, IEEE Photon. Technol. Lett.17, 2583 (2005)

    Article  ADS  Google Scholar 

  9. T. Lu, D. Yevick, L.S. Yan, B. Zhang, A.E. Willner, IEEE Photon. Technol. Lett.16, 1978 (2004)

    Article  ADS  Google Scholar 

  10. T. Lu, D. Yevick, IEEE Photon. Technol. Lett.17, 861 (2005)

    Article  ADS  Google Scholar 

  11. B.A. Berg, Nucl. Phys. B. (Proc. Suppl.) 63A–C, 982 (1998)

    Article  ADS  Google Scholar 

  12. R.E. Belardinelli, V.D. Pereya, Phys. Rev. E 75, 046701 (2007)

    Article  ADS  Google Scholar 

  13. F. Wang, D.P. Landau, Phys. Rev. Lett.86, 2050 (2001)

    Article  ADS  Google Scholar 

  14. F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  15. C. Zhou, J. Su, Phys. Rev. E 78, 046705 (2008)

    Article  ADS  Google Scholar 

  16. P.M.C. de Oliveria, T.J.P. Penna, H.J. Hermann, Braz. J. Phys.26, 677 (1996)

    ADS  Google Scholar 

  17. P.M.C. de Oliveria, Eur. Phys. J. B 6, 111 (1998)

    Article  ADS  Google Scholar 

  18. P.M.C. de Oliveira, Comp. Phys. Comm. 147, 410 (2002)

    Article  ADS  Google Scholar 

  19. G.R. Smith, A.D. Bruce, J. Phys. A 28, 6623 (1995)

    Article  ADS  Google Scholar 

  20. J.S. Wang, T.K. Ray, R.H. Swendsen, Phys. Rev. Lett.82, 476 (1999)

    Article  ADS  Google Scholar 

  21. M. Fitzgerald, R.R. Picard, R.N. Silver, J. Stat. Phys.98, 321 (2000)

    Article  Google Scholar 

  22. D. Yevick, M. Reimer, IEEE Commun. Lett. 12, 755 (2008)

    Article  Google Scholar 

  23. J.-S. Wang, R. Swendsen, J. Stat. Phys.106, 245 (2002)

    Article  Google Scholar 

  24. D. Yevick, M. Reimer, IEEE Photon. Technol. Lett.19, 1529 (2007)

    Article  ADS  Google Scholar 

  25. M.S. Shell, P.G. Debenedetti, A.Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)

    Article  ADS  Google Scholar 

  26. R.G. Ghulghazaryan, S. Hayryan, C.-K. Hu, J. Comp. Chem.28, 715 (2007)

    Article  Google Scholar 

  27. S. Bhar, S.K. Roy, Comp. Phys. Commun.180, 699 (2009)

    Article  ADS  Google Scholar 

  28. P.M.C. de Oliveira, T.J.P. Penna, H.J. Herrmann, Eur. Phys. J. B 1, 205 (1998)

    Article  ADS  Google Scholar 

  29. J.-S. Wang, Comp. Phys. Commun.121, 22 (1999)

    Article  ADS  Google Scholar 

  30. D. Yevick, M. Reimer, B. Tromborg, J. Opt. Soc. Am. A 26, 184 (2009)

    Article  ADS  Google Scholar 

  31. D. Yevick, Y.H. Lee, Phys. Rev. E 94, 043323 (2016)

    Article  ADS  Google Scholar 

  32. D. Yevick, Y.H. Lee, Int. J. Mod. Phys. C 28, 1750012 (2017)

    Article  ADS  Google Scholar 

  33. D. Yevick, Int. J. Mod. Phys. C 27, 1650033 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Heilmann, K.H. Hoffmann, Europhys. Lett.70, 155 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Yevick, Int. J. Mod. Phys. C 27, 1650041 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys.21, 1087 (1953)

    Article  ADS  Google Scholar 

  37. M. Reimer, A. Awadalla, D. Yevick, T. Lu, J. Opt. Soc. Am. A 24, 2474 (2007)

    Article  ADS  Google Scholar 

  38. P. Beal, Phys. Rev. Lett. 1, 81 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yevick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevick, D., Lee, Y.H. Dynamic canonical and microcanonical transition matrix analyses of critical behavior. Eur. Phys. J. B 90, 81 (2017). https://doi.org/10.1140/epjb/e2017-70747-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70747-x

Keywords

Navigation