Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study

  • David Kammerlander
  • Alberto Castro
  • Miguel A. L. Marques
Regular Article

DOI: 10.1140/epjb/e2017-70741-4

Cite this article as:
Kammerlander, D., Castro, A. & Marques, M.A.L. Eur. Phys. J. B (2017) 90: 91. doi:10.1140/epjb/e2017-70741-4
  • 10 Downloads

Abstract

How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.

Keywords

Computational Methods 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance
  2. 2.ARAID Foundation, Edificio CEEI, María Luna 1ZaragozaSpain
  3. 3.Institute for Biocomputation and Physics of Complex Systems of the University of ZaragozaZaragozaSpain
  4. 4.Institut für Physik, Martin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations