Skip to main content
Log in

Current distributions in stripe Majorana junctions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite (y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  2. C.W.J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  3. T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013)

    ADS  Google Scholar 

  4. M. Franz, Nat. Nanotechnol. 8, 149 (2013)

    Article  ADS  Google Scholar 

  5. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  6. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  7. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  8. V. Mourik, K. Zuo, S. Frolov, S. Plissard, E. Bakkers, L. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  9. M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  10. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  11. A.D.K. Finck, D.J. Van Harlingen, P.K. Mohseni, K. Jung, X. Li, Phys. Rev. Lett. 110, 126406 (2013)

    Article  ADS  Google Scholar 

  12. H. Zhang et al., arXiv:1603.04069 (2016)

  13. R.M. Lutchyn, T.D. Stanescu, S. Das Sarma, Phys. Rev. Lett. 106, 127001 (2011)

    Article  ADS  Google Scholar 

  14. R.M. Lutchyn, M.P.A. Fisher, Phys. Rev. B 84, 214528 (2011)

    Article  ADS  Google Scholar 

  15. T.D. Stanescu, R.M. Lutchyn, S. Das Sarma, Phys. Rev. B 84, 144522 (2011)

    Article  ADS  Google Scholar 

  16. A.C. Potter, P.A. Lee, Phys. Rev. Lett. 105, 227003 (2010)

    Article  ADS  Google Scholar 

  17. A.C. Potter, P.A. Lee, Phys. Rev. B 83, 094525 (2011)

    Article  ADS  Google Scholar 

  18. K.T. Law, P.A. Lee, Phys. Rev. B 84, 081304 (2011)

    Article  ADS  Google Scholar 

  19. S. Tewari, J.D. Sau, Phys. Rev. Lett. 109, 150408 (2012)

    Article  ADS  Google Scholar 

  20. P. San-Jose, E. Prada, R. Aguado, Phys. Rev. Lett. 112, 137001 (2014)

    Article  ADS  Google Scholar 

  21. J. Klinovaja, D. Loss, Eur. Phys. J. B 87, 171 (2014)

    Article  ADS  Google Scholar 

  22. P. Wang, J. Liu, Q.f. Sun, X.C. Xie, Phys. Rev. B 91, 224512 (2015)

    Article  ADS  Google Scholar 

  23. M. Wimmer, A.R. Akhmerov, J.P. Dahlhaus, C.W.J. Beenakker, New J. Phys. 13, 053016 (2011)

    Article  ADS  Google Scholar 

  24. J.S. Lim, R. Lopez, L. Serra, Europhys. Lett. 103, 37004 (2013)

    Article  ADS  Google Scholar 

  25. J. Osca, R. López, L. Serra, Eur. Phys. J. B 87, 84 (2014)

    Article  ADS  Google Scholar 

  26. J. Osca, L. Serra, Phys. Rev. B 91, 235417 (2015)

    Article  ADS  Google Scholar 

  27. B. Nijholt, A.R. Akhmerov, Phys. Rev. B 93, 235434 (2016)

    Article  ADS  Google Scholar 

  28. N. Sedlmayr, J.M. Aguiar-Hualde, C. Bena, Phys. Rev. B 93, 155425 (2016)

    Article  ADS  Google Scholar 

  29. J. Shabani et al., Phys. Rev. B 93, 155402 (2016)

    Article  ADS  Google Scholar 

  30. M. Kjaergaard et al., Nat. Commun. 7, 12841 (2016)

    Article  ADS  Google Scholar 

  31. C.W.J. Beenakker, Phys. Rev. B 46, 12841 (1992)

    Article  ADS  Google Scholar 

  32. Y. Takagaki, Phys. Rev. B 57, 4009 (1998)

    Article  ADS  Google Scholar 

  33. J. Osca, L. Serra, J. Phys.: Conf. Ser. 647, 012063 (2015)

    Google Scholar 

  34. C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16, 063065 (2014)

    Article  ADS  Google Scholar 

  35. MATHQ code, http://www.icmm.csic.es/sanjose/MathQ/MathQ.html

  36. L. Serra, Phys. Rev. B 87, 075440 (2013)

    Article  ADS  Google Scholar 

  37. HSL. A collection of Fortran codes for large scale scientific computation (2013). http://www.hsl.rl.ac.uk

  38. F. Tisseur, K. Meerbergen, SIAM Review 43, 235 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Xie, F. Jiang, W.E. Sha, Computer Physics Communications 198, 118 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Philadelphia, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Osca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osca, J., Llorenç, S. Current distributions in stripe Majorana junctions. Eur. Phys. J. B 90, 28 (2017). https://doi.org/10.1140/epjb/e2016-70694-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70694-0

Keywords

Navigation