Skip to main content
Log in

Global and partitioned reconstructions of undirected complex networks

The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is a significant challenge to predict the network topology from a small amount of dynamical observations. Different from the usual framework of the node-based reconstruction, two optimization approaches (i.e., the global and partitioned reconstructions) are proposed to infer the structure of undirected networks from dynamics. These approaches are applied to evolutionary games occurring on both homogeneous and heterogeneous networks via compressed sensing, which can more efficiently achieve higher reconstruction accuracy with relatively small amounts of data. Our approaches provide different perspectives on effectively reconstructing complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Majdandzic, B. Podobnik, S.V. Buldyrev, D.Y. Kenett, S. Havlin, H.E. Stanley, Nat. Phys. 10, 34 (2014)

    Article  Google Scholar 

  2. J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006)

    Article  ADS  Google Scholar 

  3. J. Smith, C. Theodoris, E.H. Davidson, Science 318, 794 (2007)

    Article  ADS  Google Scholar 

  4. R. Yang, B.-H. Wang, J. Ren, W.-J. Bai, Z.-W. Shi, W.-X. Wang, T. Zhou, Phys. Lett. A 364, 189 (2007)

    Article  ADS  Google Scholar 

  5. B.S. Kerner, Physica A 392, 5261 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011)

    Article  ADS  Google Scholar 

  7. Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, Y.-C. Lai, Nat. Commun. 4, 2447 (2013)

    ADS  Google Scholar 

  8. M. Xu, C.-Y. Xu, H. Wang, C.-Z. Deng, K.-F. Cao, Eur. Phys. J. B 88, 168 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Napoletani, T.D. Sauer, Phys. Rev. E 77, 026103 (2008)

    Article  ADS  Google Scholar 

  10. R. Guimerà, M. Sales-Pardo, Proc. Natl. Acad. Sci. USA 106, 22073 (2009)

    Article  ADS  Google Scholar 

  11. S.G. Shandilya, M. Timme, New J. Phys. 13, 013004 (2011)

    Article  Google Scholar 

  12. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M.A.F. Harrison, Europhys. Lett. 94, 48006 (2011)

    Article  ADS  Google Scholar 

  13. S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Phys. Rev. Lett. 107, 054101 (2011)

    Article  ADS  Google Scholar 

  14. W.-X. Wang, Y.-C. Lai, C. Grebogi, J. Ye, Phys. Rev. X 1, 021021 (2011)

    Google Scholar 

  15. D. Marbach, J.C. Costello, R. Küffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R. Allison, The DREAM5 Consortium, M. Kellis, J.J. Collins, G. Stolovitzky, Nat. Methods 9, 796 (2012)

    Article  Google Scholar 

  16. B. Barzel, A.-L. Barabási, Nat. Biotechnol. 31, 720 (2013)

    Article  Google Scholar 

  17. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Nat. Commun. 5, 4323 (2014)

    ADS  Google Scholar 

  18. M. Timme, J. Casadiego, J. Phys. A 47, 343001 (2014)

    Article  MathSciNet  Google Scholar 

  19. X. Han, Z. Shen, W.-X. Wang, Z. Di, Phys. Rev. Lett. 114, 028701 (2015)

    Article  ADS  Google Scholar 

  20. T. Leleu, K. Aihara, Phys. Rev. E 91, 022804 (2015)

    Article  ADS  Google Scholar 

  21. E.S.C. Ching, P.-Y. Lai, C.Y. Leung, Phys. Rev. E 91, 030801(R) (2015)

    Article  ADS  Google Scholar 

  22. E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inform. Theory 52, 489 (2006)

    Article  MathSciNet  Google Scholar 

  23. E.J. Candès, J.K. Romberg, T. Tao, Commun. Pure Appl. Math. 59, 1207 (2006)

    Article  Google Scholar 

  24. D.L. Donoho, IEEE Trans. Inform. Theory 52, 1289 (2006)

    Article  MathSciNet  Google Scholar 

  25. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  26. C. Hauert, M. Doebeli, Nature 428, 643 (2004)

    Article  ADS  Google Scholar 

  27. G. Szabó, C. Tőke, Phys. Rev. E 58, 69 (1998)

    Article  ADS  Google Scholar 

  28. G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Szabó, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)

    Article  ADS  Google Scholar 

  30. M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 78, 066101 (2008)

    Article  ADS  Google Scholar 

  31. M. Perc, A. Szolnoki, BioSystems 99, 109 (2010)

    Article  Google Scholar 

  32. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 2, 369 (2012)

    ADS  Google Scholar 

  33. P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)

    MathSciNet  Google Scholar 

  34. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  35. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003)

    Article  Google Scholar 

  37. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Ma, X. Han, Z. Shen, W.-X. Wang, Z. Di, PLoS One 10, e0142837 (2015)

    Article  Google Scholar 

  39. A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Fei Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Xu, CY., Wang, H. et al. Global and partitioned reconstructions of undirected complex networks. Eur. Phys. J. B 89, 55 (2016). https://doi.org/10.1140/epjb/e2016-60956-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60956-2

Keywords

Navigation