Skip to main content
Log in

Vortex-assisted domain wall depinning and propagation in notched nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Various notches are often introduced in spintronics to trap a domain wall (DW). Common wisdom would expect notches to strengthen DW pinning and to hinder DW motion. Interestingly, our simulations show that notches help electric current to depin a DW with the assistance of vortex generation. The DW displacement is insensitive to notch geometry and current density. This phenomenon is explained by the Thiele equation. Moreover, a current density below the intrinsic threshold value, which is the minimum current to sustain continuous DW motion in a uniform nanowire, can induce a continuous DW propagation along a wire with a series of notches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  MATH  Google Scholar 

  2. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)

    Article  ADS  Google Scholar 

  3. C. Chappert, A. Fert, F.N.V. Dau, Nat. Mater. 6, 813 (2007)

    Article  ADS  Google Scholar 

  4. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  MATH  Google Scholar 

  5. X.R. Wang, P. Yan, J. Lu, C. He, Ann. Phys. 324, 1815 (2009)

    Article  ADS  MATH  Google Scholar 

  6. X.R. Wang, P. Yan, J. Lu, Europhys. Lett. 86, 67001 (2009)

    Article  ADS  Google Scholar 

  7. L. Berger, J. Appl. Phys. 55, 1954 (1984)

    Article  ADS  Google Scholar 

  8. J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  MATH  Google Scholar 

  9. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  MATH  Google Scholar 

  10. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  11. R.D. McMichael, J. Eicke, M.J. Donahue, D.G. Porter, J. Appl. Phys. 87, 7058 (2000)

    Article  ADS  Google Scholar 

  12. M. Kläui, C.A.F. Vaz, J. Rothman, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, Phys. Rev. Lett. 90, 097202 (2003)

    Article  ADS  Google Scholar 

  13. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 97, 207205 (2006)

    Article  ADS  Google Scholar 

  14. L.K. Bogart, D. Atkinson, K. O’Shea, D. McGrouther, S. McVitie, Phys. Rev. B 79, 054414 (2009)

    Article  ADS  Google Scholar 

  15. H.Y. Yuan, X.R. Wang, Phys. Rev. B 89, 054423 (2014)

    Article  ADS  MATH  Google Scholar 

  16. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  17. S.-M. Seo, K.J. Lee, W. Kim, T.-D. Lee, Appl. Phys. Lett. 90, 252508 (2007)

    Article  ADS  Google Scholar 

  18. T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, T. Ono, Nat. Mater. 10, 194 (2011)

    Article  ADS  Google Scholar 

  19. Z. Li, S. Zhang, Phys. Rev. B, 70, 024417 (2004)

    Article  ADS  Google Scholar 

  20. G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  21. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Nat. Phys. 3, 21 (2007)

    Article  Google Scholar 

  22. K.-J. Kim, J. Ryu, G.-H. Gim, J.-C. Lee, K.-H. Shin, H.-W. Lee, S.-B. Choe, Phys. Rev. Lett. 107, 217205 (2011)

    Article  ADS  Google Scholar 

  23. H.Y. Yuan, X.R. Wang, J. Magn. Magn. Mater. 368, 70 (2014)

    Article  ADS  MATH  Google Scholar 

  24. H.Y. Yuan, X.R. Wang, Phys. Rev. B (in press)

  25. A. Aharoni, J. Appl. Phys. 83, 3432 (1998)

    Article  ADS  Google Scholar 

  26. R. Moriya, L. Thomas, M. Hayashi, Y.B. Bazaliy, C. Rettner, S.S.P. Parkin, Nat. Phys. 4, 368 (2008)

    Article  Google Scholar 

  27. A. Bisig, J. Rhensius, M. Kammerer, M. Curcic, H. Stoll, G. Schütz, B. Van Waeyenberge, K.W. Chou, T. Tyliszczak, L.J. Heyderman, S. Krzyk, A. von Bieren, M. Kläui, Appl. Phys. Lett. 96, 152506 (2010)

    Article  ADS  Google Scholar 

  28. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  MATH  Google Scholar 

  29. D.L. Huber, Phys. Rev. B 26, 3758 (1982)

    Article  ADS  Google Scholar 

  30. G.S.D. Beach, C. Knutson, C. Nistor, M. Tsoi, J.L. Erskine, Phys. Rev. Lett. 97, 057203 (2006)

    Article  ADS  Google Scholar 

  31. L. Heyne, J. Rhensius, A. Bisig, S. Krzyk, P. Punke, M. Kläui, L.J. Heyderman, L. Le Guyader, F. Nolting, Appl. Phys. Lett. 96, 032504 (2010)

    Article  ADS  Google Scholar 

  32. J. Leliaert, B. VandeWiele, A. Vansteenkiste, L. Laurson, G. Durin, L. Dupre, B. VanWaeyenberge, Phys. Rev. B 89, 064419 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Wang, X. Vortex-assisted domain wall depinning and propagation in notched nanowires. Eur. Phys. J. B 88, 214 (2015). https://doi.org/10.1140/epjb/e2015-60421-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60421-x

Keywords

Navigation